首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular beacon strategies using PNA are currently restricted to fluorophore attachment to the ends of the PNA. We report the synthesis of PNA oligomers wherein fluorophores can be attached to the PNA backbone from novel gamma-lysine PNA monomers. Oligomers incorporating the modified PNA showed comparable thermal stability to the corresponding aegPNA oligomer with DNA. When the modified PNA oligomer was annealed with complementary DNA, the fluorescence intensity increased 4-fold over the unbound PNA. [structure: see text]  相似文献   

2.
Nicola M. Howarth 《Tetrahedron》2005,61(37):8875-8887
Adenine-, cytosine- and thymine-containing peptide nucleic acid (PNA) monomers have been synthesized in which either diacetylenic or stearoyl moieties are attached to the N-or C-terminus; the diacetylenic group is embedded within a long hydrocarbon chain. A range of analogous lipophilic functionalized PNA oligomers have been prepared using either solid phase synthesis or a post-synthetic solution phase procedure following cleavage of the PNA oligomer from the solid support. Selected functionalized PNA monomers and oligomers have been incorporated into liposomal polydiacetylenes and characterized by UV-vis absorption spectroscopy. Preliminary investigations show that blue PDA-liposomes containing thymine-based PNAs can be formed and that production of liposomes with other PNA systems are viable.  相似文献   

3.
We report on a large‐scale synthesis of F‐PNA trimer 10 and PNA trimer 11 . The key improvement is the facile two‐step synthesis of (2,4‐difluoro‐5‐methylphenyl)acetic acid ( 2 ). Water solubility of the corresponding F‐PNA oligomer 10 was achieved by synthesizing solubility enhancer 5a , which is twofold positively charged and only consists of inherent structural elements of PNA. Protected and unpaired PNA n‐mers exist in a mixture of 2n conformers undergoing slow exchange and leading to complicated NMR spectra. Structure analysis was improved by recording 1H‐ and 13C‐NMR spectra at elevated temperatures above the coalescence point. Fully protected backbone derivatives show sharp resonances where expected, and spectra of protected PNAs are remarkably simplified, thereby allowing an interpretation for the first time. Both trimers 10 and 11 are considered as building blocks for a self‐replicating system based on PNA.  相似文献   

4.
5-ω-Aminopropyl-uracil bearing PNA monomers are synthesized for solid phase oligomer synthesis using FMOC protection. Several PNA oligomers with differing amounts of aminopropyluracil modification were prepared. These oligomers were found to associate with complementary DNA oligonucleotides.  相似文献   

5.
N-Benzothiazole-2-sulfonyl (Bts)-protected amino acid chlorides were used to prepare the hindered cyclosporin 8-11 tetrapeptide subunit 1. The synthesis was performed via 3a and the deprotected amines 5a, 13, and 19, including three repeated cycles involving N-methylation using iodomethane/potassium carbonate, deprotection of the Bts group, and N-acylation with a N-Bts-amino acid chloride such as 9b or 9c. Among three Bts cleavage methods compared (H3PO2/THF; NaBH4/EtOH; PhSH/K2CO3), the third gave somewhat higher overall yields. N-Acylation of 5a with the Bts-protected N-methylamino acid chloride 10b followed by deprotection was also highly efficient and could be used as an alternative route to 11. Each of the deprotected amines was isolated without chromatography using simple extraction methods to remove neutral byproducts. The tetrapeptide 1 was obtained in analytically pure form as the monohydrate.  相似文献   

6.
The synthesis of cyanuryl PNA monomer (CyaPNA) 6 was achieved by direct N-monoalkylation of cyanuric acid with N-(2-Boc-aminoethyl)-N′-(bromoacetyl)glycyl ethyl ester 4. Compound 6 was incorporated as a T-mimic into PNA oligomers and biophysical studies on their triplexes/duplex complexes with complementary DNA oligomers indicated unusual stabilization of PNA:DNA hybrids when the cyanuryl unit was located in the middle of the PNA oligomer.  相似文献   

7.
A novel efficient synthetic method for a functionalized PNA (peptide nucleic acid) is described, in which a functional molecule is incorporated in place of a nucleobase. Novel ω-AA-BocPNA-OH (20-24, AA=amino acid) were designed as PNA precursor monomer units into which functional molecules could be incorporated efficiently. Compounds 20-24 reacted quantitatively with OSu (N-hydroxysuccinimidyl) active ester derivatives and isothiocyanate derivatives of commercial functional molecules to give target functionalized PNA monomer units 25-53. Various types of functionalized PNA monomer units could be efficiently incorporated into multiple predetermined positions in a PNA oligomer by SPPS (solid phase peptide synthesis) in the same way as for the four A(Cbz), G(Cbz), C(Cbz), and T PNA monomer units.  相似文献   

8.
Nucleic acid‐encoded libraries are emerging as an attractive and highly miniaturized format for the rapid identification of protein ligands. An important criterion in the synthesis of nucleic acid encoded libraries is the scope of reactions that can be used to introduce molecular diversity and devise divergent pathways for diversity‐oriented synthesis (DOS). To date, the protecting group strategies that have been used in peptide nucleic acid (PNA) encoded synthesis (PES) have limited the choice of reactions used in the library synthesis to just a few prototypes. Herein, we describe the preparation of PNA monomers with a protecting group combination (Mtt/Boc) that is orthogonal to Fmoc‐based synthesis and compatible with a large palette of reactions that have been productively used in DOS (palladium cross‐couplings, metathesis, reductive amination, amidation, heterocycle formation, nucleophilic addition, conjugate additions, Pictet–Spengler cyclization). We incorporate γ‐modifications in the PNA backbone that are known to enhance hybridization and solubility. We demonstrate the robustness of this strategy with a library synthesis that is characterized by MALDI MS analysis at every step.  相似文献   

9.
Peptide nucleic acids (PNAs) are oligonucleotide mimics widely used as antisense, antigene molecules, and biotechnological tools. Recently, several microarrays and other biosensors based on PNAs have been developed. The construction of PNA molecular beacons or light-up probes for DNA detection requires the labelling of the PNA moiety. Labels are usually attached at the C or N terminal end by a flexible linker or in the middle of a PNA sequence, substituting one PNA base with an artificial base or by attaching fluorophores to a modified PNA backbone. The need to develop simple protocols to label PNAs encouraged us to design a new procedure for the synthesis of γ-mercaptomethyl-modified PNA. Here we propose a new strategy for the synthesis of modified PNAs, bearing amino acid side chains. The synthesis is straightforward and is an improvement to the procedures reported so far, as it uses stable intermediates and proceeds with better yields.  相似文献   

10.
The site-selective conjugation of peptide nucleic acids (PNA) with fluorescent reporter groups is essential for the construction of hybridisation probes that can report the presence of a particular DNA sequence. This paper describes convergent methods for the solution- and solid-phase synthesis of multiply labelled PNA oligomers. The solid-phase synthesis of protected PNA enabled the selective attachment of fluorescent labels at the C-terminal end (3' in DNA) which demonstrated that further manipulations on protected PNA fragments are feasible. For the conjugation to internal sites, a method is introduced that allows for the on-resin assembly of modified monomers thereby omitting the need to synthesise an entire monomer in solution. Furthermore, it is shown that the application of a highly orthogonal protecting group strategy in combination with chemoselective conjugation reactions provides access to a rapid and automatable solid-phase synthesis of dual labelled PNA probes. Real-time measurements of nucleic acid hybridisation were possible by taking advantage of the fluorescence resonance energy transfer (FRET) between suitably appended fluorophoric groups. Analogously to DNA-based molecular beacons, the dual labelled PNA probes were only weakly fluorescing in the single-stranded state. Hybridisation to a complementary oligonucleotide, however, induced a structural reorganisation and conferred a vivid fluorescence enhancement.  相似文献   

11.
The chemical synthesis of peptide nucleic acid (PNA) monomers was accomplished using various combinations of the o-nitroveratryloxycarbonyl (NVOC) group (N-aminoethylglycine backbone) and base labile acyl-type nucleobase protecting groups (anisoyl for adenine and cytosine; isobutyryl for guanine), thus offering a photolithographic solid-phase PNA synthetic strategy compatible with photolithographic oligonucleotide synthesis conditions and allowing the in situ synthesis of PNA microarrays in an essentially neutral medium, by avoiding the use of the commonly used deprotection reagents such as trifluoroacetic acid or piperidine. Convenient methods were also explored to prepare 1-(carboxymethyl)-4-N-(4-methoxybenzoyl)cytosine and 9-(carboxymethyl)-2-N-(isobutyryl)guanine with good yields.  相似文献   

12.
[reaction: see text] A practical and efficient method for PNA synthesis using an azide group to mask the N-terminus is reported. The deprotection was carried out in 5 min, while couplings were complete within 60 min. The near neutral conditions of the phosphine deprotection combined with the base-free coupling using hydroxybenzotriazole-activated monomers make this approach very mild.  相似文献   

13.
Attachment of a vinyl group at guanine position 8 provides fluorescent properties of the nucleobase. Therefore, 8-vinylguanine was introduced as a 2-aminoethylglycine peptide nucleic acid (PNA) building block. Incorporation of the guanine analog in short PNA sequences by Fmoc solid phase peptide synthesis allowed the differentiation between hybridization states of specific double strands with DNA, RNA, and PNA as well as quadruplex forming RNA/PNA oligomers based on fluorescence intensity.  相似文献   

14.
A new rhenium tricarbonyl complex of a bis(quinoline)-derived ligand (2-azido-N,N-bis((quinolin-2-yl)methyl)ethanamine, L-N(3)), namely [Re(CO)(3)(L-N(3))]Br was synthesized and characterized in-depth, including by X-ray crystallography. [Re(CO)(3)(L-N(3))]Br exhibits a strong UV absorbance in the range 300-400 nm with a maximum at 322 nm, and upon photoexcitation, shows two distinct emission bands at about 430 and 560 nm in various solvents (water, ethylene glycol). [Re(CO)(3)(L-N(3))]Br could be conjugated, on a solid phase, to a peptide nucleic acid (PNA) oligomer using the copper(I)-catalyzed azide-alkyne cycloaddition reaction (Cu-AAC, "click" chemistry) and an alkyne-containing PNA building block to give Re-PNA. It was demonstrated that upon hybridisation with a complementary DNA strand (DNA), the position of the maxima and emission intensity for the hybrid Re-PNA·DNA remained mainly unchanged compared to those of the single strand Re-PNA. The rhenium-containing PNA oligomer Re-PNA could be then mediated in living cells where they have been shown to be non-toxic contrary to the general notion that organometallic compounds are usually unstable under physiological conditions and/or cytotoxic. Furthermore, Re-PNA could be detected in living cells using fluorescent microscopy.  相似文献   

15.
A rapid, high resolution, and low sample consumption CZE method is developed for peptide nucleic acid (PNA) analysis for the first time. 30% v/v acetonitrile in PNA sample and 20% v/v acetonitrile in 50 mM borax‐boric acid (pH 8.7) as BGE were employed after optimization. The calibration curves were linear for PNA concentration ranging from 1 to 50 μmol/L. LOD and LOQ of PNA were 0.2 and 1.0 μmol/L, respectively. Since the commercially available reagent gives rise to huge PNA peak and an apparent impurity peak, the purity of PNA was evaluated to be about 81.4% by CZE method, obviously lower than the supplier's purity value of 99.9% evaluated by RP–HPLC, and also lower than 94.8% determined with RP–HPLC by our research group. The CZE method takes only 5 min, needs only 90 nL PNA, much less than 20 min and 20 μL PNA in RP–HPLC method. Moreover, the CZE method is applicable for the analysis of glutamic acid modified and lysine modified PNAs, they show different migration time with their corresponding complementary PNAs. Our results show CZE provides a new choice for PNA and modified PNA analysis, also their purity or quality evaluation.  相似文献   

16.
A lys-GTAGATCACT-lys peptide nucleic acid (PNA) decamer labelled with the luminescent 2,3-diphenyl maleimido (DPM) group on the ε-position of the terminal lysine residue was prepared through an automated solid phase synthesis. Fluorescence emission of the DPM-labelled PNA thus obtained was found to be significant and promising for the potential application in DNA recognition.  相似文献   

17.
The (3′→2′)‐phosphodiester glyceric acid backbone containing an acyclic oligomer tagged with 2,4‐disubstituted pyrimidines as alternative recognition elements have been synthesized. Strong cross‐pairing of a 2,4‐dioxo‐5‐aminopyrimidine hexamer, rivaling locked nucleic acid (LNA) and peptide nucleic acid (PNA), with complementary adenine‐containing DNA and RNA sequences was observed. The corresponding 2,4‐diamino‐ and 2‐amino‐4‐oxo‐5‐aminopyrimidine‐tagged oligomers were synthesized, but difficulties in deprotection, purification, and isolation thwarted further investigations. The acyclic phosphate backbone structure of the protected oligomer seems to be prone to an eliminative degradation owing to the acidic hydrogen at the 2′‐position—an arrangement that renders the oligomer vulnerable to the conditions used for the removal of the protecting groups on the heterocyclic recognition element. However, the free oligomers seem to be stable under the conditions investigated.  相似文献   

18.
A new combined solid-liquid phase synthesis method for a spin labeled peptide nucleic acid (PNA) is developed. The methodology involved initial preparation of a protected PNA on solid phase, followed by efficient solution phase coupling to a spin label containing a reactive carboxylic group. This strategy allows to maintain the integrity of the nitroxide moiety during the various steps of chemical synthesis assuring in the same time the fidelity of the hybridization assay. This compound can be used as a reporter molecule to investigate the binding of peptide nucleic acids to oligonucleotide sequences (DNA or RNA) by EPR spectroscopy.  相似文献   

19.
《Tetrahedron: Asymmetry》2006,17(17):2499-2503
A new, optically active, cyclobutyl-carbonyl substituted PNA monomer has been synthesized stereoselectively from a chiral amino acid prepared from (+)-α-pinene. A conformational search shows a lack of conformational bias for the monomer and incorporation of the monomer into a standard oligomer is tolerated without changing the binding affinity towards sequence complementary RNA, DNA or PNA targets.  相似文献   

20.
We present a method to covalently attach peptide nucleic acid (PNA) to liposomes by conjugation of PNA peptide to charged amino acids and synthetic di-alkyl lipids ("PNA amphiphile," PNAA) followed by co-extrusion with disteroylphosphatidylcholine (DSPC) and cholesterol. Attachment of four Glu residues and two ethylene oxide spacers to the PNAA was required to confer proper hydration for extrusion and presentation for DNA hybridization. The extent of DNA oligomer binding to 10-mer PNAA liposomes was assessed using capillary zone electrophoresis. Nearly all PNAs on the liposome surface are complexed with a stoichiometric amount of complementary DNA 10-mers after 3-h incubation in pH 8.0 Tris buffer. No binding to PNAA liposomes was observed using DNA 10-mers with a single mismatch. Longer DNA showed a greatly attenuated binding efficiency, likely because of electrostatic repulsion between the PNAA liposome double layer and the DNA backbone. Langmuir isotherms of PNAA:DSPC:chol monolayers indicate miscibility of these components at the compositions used for liposome preparation. PNAA liposomes preserve the high sequence-selectivity of PNAs and emerge as a useful sequence tag for highly sensitive bioanalytical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号