首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calculations of the nuclear shielding and spin-spin coupling constants were carried out for two models of clathrate hydrates, 5(12) and 5(12)6(8), using the density functional theory three-parameter Becke-Lee-Yang-Parr method with the basis set aug-cc-pVDZ (optimization) and HuzIII-su3 (NMR parameters). Particular attention has been devoted to evaluate the influence of a geometrical arrangement, the effect of long-range interactions on the NMR shielding of methane molecule, and to predict whether (13)C and (1)H chemical shifts can distinguish between guests in two clathrate hydrates cages. The correlation of the changes in the (17)O shielding constants depend strongly on the hydrogen-bonding topology. The intermolecular hydrogen-bond transmitted (1h)J(OH) spin-spin coupling constants are substantial. The increase of their values is connected with the elongation of the intramolecular O-H bond and the shortening of the intermolecular O···H distance. These data suggests that hydrogen bonds between double donor-single acceptor (DDA)-type water molecules acting as a proton acceptor from single donor-double acceptor (DAA)-type water molecules are stronger than ones formed by DAA-type water molecules acting as an acceptor for a DDA water proton. These state-of-the-art calculations confirmed the earlier experimental findings of the cage-dependency of (13)C chemical shift of methane.  相似文献   

2.
The magnetic shielding constants of the different atoms of formamide, hydrated formamide and N-methylformamide are calculated by anab initio method. For the protons of formamide the measured differences between their chemical shifts are correctly reproduced by theory, provided that the molecular geometry used as input is carefully chosen. The differences between the values of the magnetic shielding constants calculated for formamide and hydrated formamide show that intermolecular hydrogen bonding produces variations of chemical shifts for all the atoms of the molecule except the formyl proton. The calculated chemical shift variations between formamide and N-methylformamide are compared to the experimental values and discussed in relation with different hydrogen bonding possibilities of the two molecules. The calculation of the contact term of the spin-spin coupling constants of formamide and hydrated formamide shows that in most cases the measured trends are satisfactorily reproduced and that the variations of these terms upon hydration are less than 3%.  相似文献   

3.
The magnetic shielding constants of the 1H, 13C and 15N nuclei of imidazole are calculated for the isolated and hydrated molecules. The results show that the hydrogen bonds produce not only large variations of the chemical shifts for the nitrogen nuclei and the NH proton which are directly involved in the intermolecular bonding, but also measurable shifts for the carbon nuclei. The calculated shielding constants and their variation with hydration are discussed in relation to experimental results concerning imidazole, the 5-membered ring of the purine bases and the imidazole ring of histidine. The calculated values of the spin-spin coupling constants confirm that it is possible to study the tautomeric equilibrium of the imidazole ring from the measurement of these coupling constants and that spin-spin coupling constants are not very sensitive to solvent effects.  相似文献   

4.
Relativistic density functional theory (DFT) calculations of nuclear spin-spin coupling constants and shielding constants have been performed for selected transition metal (11th and 12th group of periodic table) and thallium cyanides. The calculations have been carried out using zeroth-order regular approximation (ZORA) Hamiltonian and four-component Dirac-Kohn-Sham (DKS) theory with different nonrelativistic exchange-correlation functionals. Two recent approaches for representing the magnetic balance (MB) between the large and small components of four-component spinors, namely, mDKS-RMB and sMB, have been employed for shielding tensor calculations and their results have been compared. Relativistic effects have also been analysed in terms of scalar and spin-orbit contributions at the two-component level of theory, including discussion of heavy-atom-on-light-atom effects for (1)J(CN), σ(C), and σ(N). The results for molecules containing metals from 4th row of periodic table show that relativistic effects for them are small (especially for spin-spin coupling constants). The biggest effects are observed for the 6th row where nonrelativistic theory reproduces only about 50%-70% of the two-component ZORA results for (1)J(MeC) and about 75% for heavy metal shielding constants. It is important to employ a full Dirac picture for calculations of heavy metal shielding constants, since ZORA reproduces only 75%-90% of the DKS results. Smaller discrepancies between ZORA-DFT and DKS are observed for nuclear spin-spin coupling constants. No significant differences are observed between the results obtained using mDKS-RMB and sMB approaches for magnetic balance in four-component calculations of the shielding constants.  相似文献   

5.
Magnetic shielding constants are calculated for the protons in XOH and XOH…OH2 (XH, CH3, NH2, OH and F) molecules using a slightly extended set of atomic functions modified by gauge factors. These results are used to determine theoretical values for the NMR hydrogen bond shifts in the XOH…OH2 systems. Such theoretical data are consistent with the few available experimental data. An analysis of the theoretical results reveals that there are three major types of shielding contribution to the NMR hydrogen bond shift; (a) a deshielding change due to the variation of the local currents on the hydrogen bonded proton; (b) a reduction in shielding from currents localized on the oxygen atom of the proton donor; (c) a deshielding contribution from currents induced on the oxygen atom of the proton acceptor. Except for the water dimer, contributions (a), (b) and (c) are of comparable importance for changes in isotropic shielding. For (H2O)2 contributions (a) and (c) are somewhat more important than contribution (b). Contribution (c) is almost totally responsible for the changes in the anistropies of the shielding tensors associated with the hydrogen bonded protons. The proton shielding anisotropy changes which occur on hydrogen bond formation are generally much larger than the corresponding variations in the isotropic values of the shielding tensors. This suggests that proton magnetic shielding anisotropies may be more sensitive measures of features of hydrogen bonding than are isotropic proton shielding constants.  相似文献   

6.
The second-rank tensor character of the paramagnetic spin-orbit and spin-dipolar contributions to nuclear spin-spin coupling constants is usually ignored when NMR measurements are carried out in the isotropic phase. However, in this study it is shown that isotropic (2)J(FF) couplings strongly depend on the relative orientation of the C-F bonds containing the coupling nuclei and the eigenvectors of such tensors. Predictions about such effect are obtained using a qualitative approach based on the polarization propagator formalism at the RPA, and results are corroborated performing high-level ab initio spin-spin coupling calculations at the SOPPA(CCSD)/EPR-III//MP2/EPR-III level in a model system. It is highlighted that no calculations at the RPA level were carried out in this work. The quite promising results reported in this paper suggest that similar properties are expected to hold for the second-rank nuclear magnetic shielding tensor.  相似文献   

7.
A gauge transformation of the vector potential A(m(I) ), associated to the magnetic dipole m(I) of nucleus I in a molecule, has been studied. The conditions for gauge invariance of nuclear magnetic shielding, nuclear spin/electron orbit contribution to spin-spin coupling between two nuclei, I and J, and electronic current density induced by m(I), have been expressed via quantum mechanical sum rules that are identically satisfied for exact and optimal variational wavefunctions. It is shown that separate diamagnetic and paramagnetic contributions to the properties transform into one another in the gauge transformation, whereas their sum is invariant. Therefore, only total response properties have a physical meaning. In particular, the disjoint diamagnetic and paramagnetic components of nuclear spin/electron orbit contributions to coupling constants are not uniquely defined. The diamagnetic contribution to the nuclear spin-spin coupling tensor, evaluated as an expectation value in the Ramsey theory, can alternatively be expressed as a sum-over-states formula, by rewriting the second-order Hamiltonian in commutator form a? la Geertsen, as previously reported by Sauer. Other sum-over-states formulae are obtained via a gauge transformation, by a procedure formally allowing for a continuous translation of the origin of the m(I)-induced current density, analogous to those previously proposed for magnetizabilities and nuclear magnetic shielding.  相似文献   

8.
This work outlines the calculation of indirect nuclear spin-spin coupling constants with spin-orbit corrections using density functional response theory. The nonrelativistic indirect nuclear spin-spin couplings are evaluated using the linear response method, whereas the relativistic spin-orbit corrections are computed using quadratic response theory. The formalism is applied to the homologous systems H2X (X=O,S,Se,Te) and XH4 (X=C,Si,Ge,Sn,Pb) to calculate the indirect nuclear spin-spin coupling constants between the protons. The results confirm that spin-orbit corrections are important for compounds of the H2X series, for which the electronic structure allows for an efficient coupling between the nuclei mediated by the spin-orbit interaction, whereas in the case of the XH4 series the opposite situation is encountered and the spin-orbit corrections are negligible for all compounds of this series. In addition we analyze the performance of the density functional theory in the calculations of nonrelativistic indirect nuclear spin-spin coupling constants.  相似文献   

9.
Ab initio equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been carried out to investigate the effect of a third polar near-neighbor on one-bond ((1)J(X)(-)(H) and (1h)J(H)(-)(Y)) and two-bond ((2h)J(X)(-)(Y)) spin-spin coupling constants in AH:XH:YH(3) complexes, where A and X are (19)F and (35)Cl and Y is either (15)N or (31)P. The changes in both one- and two-bond spin-spin coupling constants upon trimer formation indicate that the presence of a third molecule promotes proton transfer across the X-H-Y hydrogen bond. The proton-shared character of the X-H-Y hydrogen bond increases in the order XH:YH(3) < ClH:XH:YH(3) < FH:XH:YH(3). This order is also the order of decreasing shielding of the hydrogen-bonded proton and decreasing X-Y distance, and is consistent with the greater hydrogen-bonding ability of HF compared to HCl as the third molecule. For all complexes, the reduced X-H and X-Y spin-spin coupling constants ((1)K(X)(-)(H) and (2h)K(X)(-)(Y)) are positive, consistent with previous studies of complexes in which X and Y are second-period elements in hydrogen-bonded dimers. (1h)K(H)(-)(Y) is, as expected, negative in these complexes which have traditional hydrogen bonds, except for ClH:FH:NH(3) and FH:FH:NH(3). In these two complexes, the F-H-N hydrogen bond has sufficient proton-shared character to induce a change of sign in (1h)K(H)(-)(Y). The effects of trimer formation on spin-spin coupling constants are markedly greater in complexes in which NH(3) rather than PH(3) is the proton acceptor.  相似文献   

10.
The nonempirical NDDO MO method in its unrestricted form has been used to evaluate isotropic hyperfine coupling constants and nuclear spin-spin coupling constants. Satisfactory agreement with INDO and experimental results is obtained.  相似文献   

11.
The effect of electron lone-pairs on the Fermi-contact (FC) contribution to indirect nuclear spin-spin coupling constants is analyzed using new tools for their interpretation. In particular, visualization of spin-spin coupling pathways using the coupling deformation density (CDD) has been employed. Furthermore, the recently developed perturbation-stable localization procedure has been applied for decomposition of CDD and the calculated value of couplings into contributions from localized molecular orbitals (LMOs). Correlation between the overlap of densities of LMOs representing lone-pairs and the Fermi-contact contribution to spin-spin coupling constants has been demonstrated. A new way for analyzing spin-spin couplings using the expansion of CDD as a linear combination of the products of molecular orbitals has been suggested. The considered examples include two- and three-bond phosphor-phosphor couplings. Significance of the obtained insight is not restricted to spin-spin couplings of nuclei possessing lone-pairs, as demonstrated in the example of vicinal hydrogen-hydrogen coupling in ethane.  相似文献   

12.
A systematic ab initio EOM-CCSD study of 15N-15N and 15N-1H spin-spin coupling constants has been carried out for a series of complexes formed from 11 nitrogen bases with experimentally measured proton affinities. When these complexes are arranged in order of increasing proton affinity of the proton-acceptor base and, for each proton acceptor, increasing order of proton affinity of the protonated N-H donor, trends in distances and signs of coupling constants are evident that are indicative of the nature of the hydrogen bond. All two-bond spin-spin coupling constants (2hJ(N-N)) are positive and decrease as the N-N distance increases. All one-bond N-H coupling constants (1J(N-H)) are negative (1K(N-H) are positive). 1J(N-H) is related to the N-H distance and the hybridization of the donor N atom. One-bond H...N coupling constants (1hJ(H-N)) are positive (1hK(H-N) are negative) for traditional hydrogen bonds, but 1hJ(H-N) becomes negative when the hydrogen bond acquires sufficient proton-shared character. The N-N and H...N distances at which 1hJ(H-N) changes sign are approximately 2.71 and 1.62 A, respectively. Predictions are made of the values of 2hJ(N-N) and 1J(N-H), and the signs of 1hJ(H-N), for those complexes that are too large for EOM-CCSD calculations.  相似文献   

13.
The N-H...X (X = N,O,S) intramolecular hydrogen bond in the series of 2(2'-heteroaryl)pyrroles and their trifluoroacetyl derivatives is examined by the (1)H, (13)C, (15)N spectroscopy and density functional theory (DFT) calculations. The influence of the hydrogen bond on coupling and shielding constants is considered. It is shown that the N-H...N intramolecular hydrogen bond causes a larger increase in the absolute size of the (1)J(N,H) coupling constant and a larger deshielding of the bridge proton than the N-H...O hydrogen bond. The effect of the N-H...S interaction on the (1)J(N,H) coupling constant and the shielding of the bridge proton is small. The NMR parameter changes in the series of the 2(2'-heteroaryl)pyrroles due to N-H...X hydrogen bond and the series of the 1-vinyl-2-(2'-heteroaryl)-pyrroles due to C-H...X hydrogen bond have the same order. The proximity of the nitrogen, oxygen or sulfur lone pair to the F...H hydrogen bridge quenches the trans-hydrogen bond spin-spin couplings (1h)J(F,H-1) and (2h)J(F,N).  相似文献   

14.
G. Höfle 《Tetrahedron》1977,33(15):1963-1970
Proton coupled and proton noise decoupled 13C-NMR spectra of 18 1,4-napthoquinones and 13 anthraquinones with oxygen, nitrogen and halogen substituents have been measured. The assignment of the spectra was largely achieved with the aid of the two- and three-bond spin-spin coupling between 13C and protons and the substituent effects.  相似文献   

15.
The indirect nuclear spin-spin coupling constants between nuclei belonging to the axis and to the macrocycle of three structurally related rotaxanes have been calculated by means of density functional theory. It has been shown that the through-space axis-macrocycle proton-proton coupling constants can be as large as 0.4-0.5 Hz and therefore of measurable values. The largest through-space axis-macrocycle carbon-proton and nitrogen-proton coupling constants are 0.2-0.3 Hz. Visualization of coupling pathways by means of the coupling energy density method indicates that the larger proton-proton couplings are indeed transmitted through the space between the coupled nuclei. Thus, it seems that measurement of such couplings should be possible and that indirect spin-spin couplings can be actually transmitted through-space, with no covalent or hydrogen bonds between the coupled nuclei.  相似文献   

16.
From the spin-spin coupling constants of pyridine and monosubstituted pyridines the effects of several substituents have been calculated- Assuming an additivity relationship when two of these substituents are present in the same molecule, the spin-spin coupling constants for 11 disubstituted pyridines have been calculated.The NMR spectra of 13 disubstituted pyridines have been studied to obtain accurate values of their coupling constants. The experimental values of these constants are in very good agreement with those calculated using the additivity relationships.  相似文献   

17.
18.
Effects of spin-spin interactions on the nuclear magnetic relaxation dispersion (NMRD) of protons were studied in a situation where spin [fraction one-half] hetero-nuclei are present in the molecule. As in earlier works [K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, J. Chem. Phys. 129, 234513 (2008); S. E. Korchak, K. L. Ivanov, A. V. Yurkovskaya, and H.-M. Vieth, ibid. 133, 194502 (2010)], spin-spin interactions have a pronounced effect on the relaxivity tending to equalize the longitudinal relaxation times once the spins become strongly coupled at a sufficiently low magnetic field. In addition, we have found influence of (19)F nuclei on the proton NMRD, although in the whole field range, studied protons and fluorine spins were only weakly coupled. In particular, pronounced features in the proton NMRD were found; but each feature was predominantly observed only for particular spin states of the hetero-nuclei. The features are explained theoretically; it is shown that hetero-nuclei can affect the proton NMRD even in the limit of weak coupling when (i) protons are coupled strongly and (ii) have spin-spin interactions of different strengths with the hetero-nuclei. We also show that by choosing the proper magnetic field strength, one can selectively transfer proton spin magnetization between spectral components of choice.  相似文献   

19.
The cooperativity effects on both the electronic energy and NMR indirect nuclear spin-spin coupling constants J of the linear complexes (HCN)n and (HNC)n (n = 1-6) are discussed. The geometries of the complexes were optimized at the MP2 level by using the cc-pVTZ basis sets. The spin-spin coupling constants were calculated at the level of the second-order polarization propagator approximation with use of the local dense basis set scheme based on the cc-pVTZ-J basis sets. We find strong correlations in the patterns of different properties such as interaction energy, hydrogen bond distances, and spin-spin coupling constants for both series of compounds. The intramolecular spin-spin couplings are with two exceptions dominated by the Fermi contact (FC) mechanism, while the FC term is the only nonvanishing contribution for the intermolecular couplings. The latter do not follow the Dirac vector model and are important only between nearest neighbors.  相似文献   

20.
The vitamins, pyridoxine, pyridoxal, pyridoxamine, pyridoxal-5′-phosphate and pyridoxamine-5′-phosphate, have been studied in aqueous solution over a pH range of 2–12 by 13C nuclear magnetic resonance spectroscopy. Resonance assignments are made primarily by the spin–spin coupling constants of carbons with protons and with phosphorus. The proton–carbon coupling constants show a marked conformational dependence in the hemiacetal form of pyridoxal. Furthermore, the H-6? C-5 coupling constant in the vitamins is much smaller than the corresponding constant in pyridine. This may be due either to an effect of the C-5 substituent in vitamins or to a different electronic configuration of the zwitterionic hydroxypyridine ring. The addition of manganese to a solution of pyridoxal phosphate causes line broadenings consistent with the interaction of the metal ion with this vitamin at the formyl and phenolic oxygens. The chemical shifts of the aromatic carbons of pyridoxine have been calculated, as a function of pH, by summing shielding parameters which were estimated empirically from pyridine derivatives. The calculated shifts agree well with the experimental data for C-3, C-5 and C-6, less well for C-2, and poorly for C-4. The deviation from additivity for C-4 indicates a preferred orientation for the 4-hydroxymethyl substituent caused by internal hydrogen bonding between the substituents at C-3 and C-4. Evidence is presented for the existence of the free aldehyde form of pyridoxal at alkaline pH. Aldimine complexes of pyridoxal and pyridoxal phosphate with amines and amino acids have also been studied. Characteristic chemical shift changes caused by both pyridinium and aldimine nitrogen deprotonations are seen. Additionally, the chemical shifts of carbons of the pyridine ring are dependent upon the structure of the imine, especially when the aldimine nitrogen is protonated. We conclude that this dependency is due to steric effects in an aldimine complex which is constrained by internal hydrogen bonding. We also discuss the merits of carbons 3 and 4 as possible sites of cofactor labeling for enzymatic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号