首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We study the thermoelectric power of the electrons under magnetic quantization in III–V, II–VI, PbTe/PbSnTe and strained layer superlattices with graded interfaces and compare the same with the corresponding bulk specimens of the constituent materials by formulating the respective expressions incorporating the broadening. It is found, by taking GaAs/Ga1−x Al x As, CdS/CdTe, PbTe/PbSnTe and InAs/GaSb superlattices with graded interfaces as examples, that the thermoelectric power exhibits oscillatory dependence with the inverse quantizing magnetic field due to Shubnikov-de Hass effect and increases with decreasing electron concentration in an oscillatory manner in all the aforementioned cases. The thermopower in graded superlattices is greater than that of constituent bulk materials together with the fact that the oscillations in superlattices show up much more significantly as compared to the respective constituent materials. In addition, the well-known expressions for bulk specimens of wide-gap semiconductors have also been obtained as special cases from our generalized expressions under certain limiting conditions.  相似文献   

2.
We investigate the Einstein relation for the diffusivity-mobility ratio (DMR) for n-i-p-i and the microstructures of nonlinear optical compounds on the basis of a newly formulated electron dispersion law. The corresponding results for III-V, ternary and quaternary materials form a special case of our generalized analysis. The respective DMRs for II-VI, IV-VI and stressed materials have been studied. It has been found that taking CdGeAs2, Cd3As2, InAs, InSb, Hg1−xCdxTe, In1−xGaxAsyP1−y lattices matched to InP, CdS, PbTe, PbSnTe and Pb1−xSnxSe and stressed InSb as examples that the DMR increases with increasing electron concentration in various manners with different numerical magnitudes which reflect the different signatures of the n-i-p-i systems and the corresponding microstructures. We have suggested an experimental method of determining the DMR in this case and the present simplified analysis is in agreement with the suggested relationship. In addition, our results find three applications in the field of quantum effect devices.  相似文献   

3.
The band structure of HgTe quantum wells (QWs) has been determined from absorption experiments on superlattices in conjunction with calculations based on an 8×8 k·p model. The band structure combined with self-consistent Hartree calculations has enabled transport results to be quantitatively explained.Rashba spin–orbit, (SO) splitting has been investigated in n-type modulation doped HgTe QWs by means of Shubnikov–de Haas oscillations (SdH) in gated Hall bars. The heavy hole nature of the H1 conduction subband in QWs with an inverted band structure greatly enhances the Rashba SO splitting, with values up to 17 meV.By analyzing the SdH oscillations of a magnetic two-dimensional electron gas (2DEG) in modulation-doped n-type Hg1−xMnxTe QWs, we have been able to separate the gate voltage-dependent Rashba SO splitting from the temperature-dependent giant Zeeman splitting, which are of comparable magnitudes. In addition, hot electrons and Mn ions in a magnetic 2DEG have been investigated as a function of current.Nano-scale structures of lower dimensions are planned and experiments on sub-micrometer magneto-transport structures have resulted in the first evidence for ballistic transport in quasi-1D HgTe QW structures.  相似文献   

4.
This article provides a review of our results on nanostructurization of lead telluride, PbTe. This IV–VI group narrow-gap semiconductor exhibits paraelectric behaviour leading to a huge dielectric constant ε>1000 at helium temperatures. Because the Coulomb potential fluctuations produced by charged defects are strongly suppressed in PbTe nanostructures, one can reach the quantum ballistic regime at significantly relaxed conditions in comparison with other systems. In particular, we observe precise zero-field conductance quantization in the wires made of modulation doped PbTe/PbEuTe quantum wells where the heavily doped layer is separated from the conducting channel only by a 2 nm thick spacer layer. The second important property is the very large Zeeman splitting. It reaches 4 meV/T. Accordingly, significant spin splitting of the conductance plateaux is observed already at fields below 1 T. Therefore, the system is attractive for the construction of local spin filters. We show that the presence of metal layers does not impair the quantum ballistic properties. Furthermore, we have developed a new method of tuning the PbTe nanostructures, using laterally placed metallic electrodes. We have found that this method is more effective than previous schemes using used p–n junctions and it provides better stability of the nanostructures.  相似文献   

5.
It is shown that, due to the electron–hole symmetry of the fundamental gap of the lead–salts (PbTe, PbSe and PbS), the Rashba spin splitting in their flat band asymmetric quantum wells is much reduced with the usual equal conduction and valence band-offsets. Different from the III–V case, we find that the important structure inversion asymmetry for the Rashba splitting in IV–VI quantum wells with different left and right barriers is not a material property (i.e., barrier height, effective mass or band gap) but results from the band alignment. This is shown by specific envelope function calculations of the spin-dependent subband structure of Pb1−xEuxTe/PbTe/Pb1−yEuyTe asymmetric quantum wells (xy), based on a simple but accurate four-band kp model for the bulk band structure near the gap, which takes into account band anisotropy, nonparabolicity and multi-valley effects.  相似文献   

6.
We describe our study of ballistic transport in nanostructures of lead telluride, PbTe. Submicron devices have been fabricated by electron beam lithography and chemical etching of 50 nm wide PbTe single quantum wells embedded between Pb0.92Eu0.08Te barriers grown by MBE on BaF2. The electron concentration in the devices was tuned by the gate voltage applied across an interfacial p–n junction. The most important observation was zero-magnetic field conductance quantization (in multiplies of 2e2/h) in narrow constrictions of dimensions comparable to electron mean free path calculated from transport mobility. This indicates considerable relaxation of requirements for quantum ballistic transport in comparison with other materials. We argue that the huge static dielectric constant of PbTe (0=1350 at 4.2 K) leads to suppression of the long-range Coulomb potentials of charged impurities and, thus, provides favorable conditions for the conductance quantization.  相似文献   

7.
This study describes a direct measurement of spectroscopic g-factors of photo-generated carriers in InP/ZnS and HgTe/HgxCd1−xTe(S) core–shell nanocrystals. The g-factor of trapped electrons and their spin-lattice versus radiative relaxation ratio (T1/τ) were measured by the use of continuous-wave and time-resolved optically detected magnetic resonance (ODMR) spectroscopy. The g-factors of excitons and donor–hole pairs were derived by the use of field-induced circular-polarized photoluminescence (CP-PL) spectroscopy. The combined information enabled to determine the g-factors of the individual band-edge electrons and holes. The results suggested an increase of the g-factor of the exciton and conduction electron with a decrease of the nanocrystal size.  相似文献   

8.
A two-step pulsed UV-laser process which independently controls the metallurgical and electrical junction depth of a Si1–x Ge x /Si heterojunction diode has been implemented. Pulsed Laser-Induced Epitaxy (PLIE) combined with Gas-immersion Laser Doping (GILD) are used to fabricate boron-doped heteroepitaxial p +/N Si1–x Ge x /Si layers and diodes. Borontrifluoride is used as the gaseous dopant source in the GILD process step. Boron incorporation and activation are investigated as a function of laser energy fluence and the number of laser pulses using SIMS and Halleffect measurements. The dose of incorporated dopant is on the order of 1013 cm–2 per pulse. The B profiles obtained are flat except for a peak at the interface resulting from segregation effects. The B and Ge distributions are compared with shifts in the turn-on voltage of p +/N Si1–x /Si heterojunction diodes produced by the process. The GILD/PLIE process is spatially selective with the resulting diodes fabricated being quasiplanar. Hole mobilities in the heavily doped Si1–x Ge x films are found to be slightly lower than in comparable Si films.Presently at the Oregon Graduate Institute, Beaverton, OR 97006, USA  相似文献   

9.
We study theoretically the influence of light waves on the thermoelectric power under large magnetic field (TPM) for III‐V, ternary and quaternary materials, whose unperturbed energy‐band structures, are defined by the three‐band model of Kane. The solution of the Boltzmann transport equation on the basis of this newly formulated electron dispersion law will introduce new physical ideas and experimental findings in the presence of external photoexcitation. It has been found by taking n‐InAs, n‐InSb, n‐Hg1‐xCdxTe and n‐In1‐xGaxAsyP1‐y lattice matched to InP as examples that the TPM decreases with increase in electron concentration, and increases with increase in intensity and wavelength, respectively in various manners. The strong dependence of the TPM on both light intensity and wavelength reflects the direct signature of light waves that is in direct contrast as compared with the corresponding bulk specimens of the said materials in the absence of external photoexcitation. The rate of change is totally band‐structure dependent and is significantly influenced by the presence of the different energy‐band constants. The well‐known result for the TPM for nondegenerate wide‐gap materials in the absence of light waves has been obtained as a special case of the present analysis under certain limiting conditions and this compatibility is the indirect test of our generalized formalism. Besides, we have also suggested the experimental methods of determining the Einstein relation for the diffusivity:mobility ratio, the Debye screening length and the electronic contribution to the elastic constants for materials having arbitrary dispersion laws.  相似文献   

10.
Abstract

Modulation doped CdTe/Cd1?xMgxTe heterostructures grown on GaAs substrates were studied by means of magnetotransport measurements performed under hydrostatic pressure, as well as X-ray diffraction and cross-sectional transmission electron microscopy completed before and after pressure experiments. We have shown that hydrostatic pressure leads to the creation of dislocations in the CdTe/Cd1?xMgxTe structure in the vicinity of the interface between the II-VI structure and the substrate. The dislocation-enhanced internal stress leads to internal microfractures, resulting in a permanent damage of the heterostructure.  相似文献   

11.
PbTe/CdTe量子点的光学增益   总被引:2,自引:0,他引:2       下载免费PDF全文
徐天宁  吴惠桢  斯剑霄 《物理学报》2008,57(4):2574-2581
PbTe/CdTe量子点是一类新型异系低维结构材料,实验发现具有强的室温中红外光致发光现象.为研究这一材料体系的发光特性,建立了理论模型,计算了PbTe/CdTe量子点的光学跃迁和增益.模型基于k·p包络波函数方法并考虑了PbTe能带结构的各向异性.分析了量子点光学增益与量子点尺寸、注入载流子浓度的关系.结果表明,当注入载流子浓度在(0.3—3)×1018cm-3范围时,尺寸为15—20nm的量子点可以产生 关键词: PbTe/CdTe量子点 光学增益 铅盐矿半导体  相似文献   

12.
The NMR signals of77Se or125Te have been measured in II–VI and IV–VI-compounds ZnSe, CdSe, HgSe, PbSe and ZnTe, CdTe, HgTe, PbTe relative to aqueous solutions of Na2SeO3 or K2TeO3. The chemical shifts of about ?600 ppm for77Se and of about ?2700 ppm for125Te have been compared with theoretical calculations. For77Se in hexagonal CdSe an anisotropic chemical shift has been observed and for125Te in CdTe and PbTe linesplittings have been found. The linewidths of the77Se and125Te NMR signals increase with the atomic number of the counterions.  相似文献   

13.
Modulation doped Al0.3Ga0.7As/In x Ga1–x As/GaAs high electron mobility transistor structures for device application have been grown using molecular beam epitaxy. Initially the critical layer thickness for InAs mole fractions up to 0.5 was investigated. For InAs mole fractions up to 0.35 good agreement with theoretical considerations was observed. For higher InAs mole fractions disagreement occurred due to a strong decrease of the critical layer thickness. The carrier concentration for Al0.3Ga0.7As/In x Ga1–x As/GaAs high electron mobility transistor structures with a constant In x Ga1–x As quantum well width was investigated as a function of InAs mole fraction. If the In x Ga1–x As quantum well width is grown at the critical layer thickness the maximum carrier concentration is obtained for an InAs mole fraction of 0.37. A considerable higher carrier concentration in comparison to single-sided -doped structures was obtained for the structures with -doping on both sides of the In x Ga1–x As quantum well. Al0.3Ga0.7As/In x Ga1–x As/GaAs high electron mobility transistor structures with InAs mole fractions in the range 0–0.35 were fabricated for device application. For the presented field effect transistors best device performance was obtained for InAs mole fractions in the range 0.25–0.3. For the field effect transistors with an InAs mole fraction of 0.25 and a gate length of 0.15 m a f T of 115 GHz was measured.Dedicated to H.-J. Queisser on the occasion of his 60th birthday  相似文献   

14.
The resistance of FexCo1–x Si and FexMn1–x Si weak band magnetic materials in the temperature interval 4.2–300 K is measured. Based on the experimental data, the conversion from semiconducting and submetallic materials with negative temperature resistance coefficients (TRC) to materials with positive TRC caused by the electron concentration is described. It is demonstrated that the main reason for the conversion of the electronic structure is splitting of s-, p- and d-electronic spectra in fluctuating exchange fields. As a result, the number of current carriers increases significantly with the temperature. The competition of this effect with electron-phonon scattering is the basic mechanism of forming resistive states with abnormally low TRC in the examined weak band magnetic materials.  相似文献   

15.
Currently, CdTe/Cd x Hg1-x Te/CdTe heterostructures attract particular interest and are very promising for developing the next-generation terahertz radiation detectors. However, properties of such structures have not yet been studied in sufficient detail. The energy spectrum and wave functions of the CdTe/Cd x Hg1-x Te/CdTe heterostructure were theoretically modeled for various well widths, the valence band offset, and composition x in the range 0<x<0.16. Characteristic features of the behavior of energy levels of two-dimensional electrons in such structures were studied with respect to x variation. A criterion for determining the number of electronic levels below the conduction band bottom, applicable to compositions 0<x<0.16 was obtained. The time of two-dimensional electron relaxation by longitudinal optical phonons was calculated.  相似文献   

16.
孙伟峰  李美成  赵连城 《物理学报》2010,59(8):5661-5666
通过第一性原理的完整形式,基于全势能线性化增广平面波方法确定的精确能带结构和波函数,推算了技术上极为重要的窄带隙半导体超晶格中载流子俄歇复合时间.少数载流子的俄歇寿命由两种相关的方法来确定:1)由Fermi-金规则直接估算,2)联系俄歇复合和其相反过程碰撞电离,建立细致平衡公式,在一个统一的结构中进行间接估算.在n掺杂HgTe/CdTe和InAs/InxGa1-xSb超晶格中,由直接和间接的方法确定的寿命与一些实验结果相当一致.这说明该计算模式可以作为一种精确的手段用于窄带隙超晶格材料的性能优化. 关键词: 第一性原理 俄歇复合 碰撞电离 半导体超晶格  相似文献   

17.
ZnS antireflective coatings and passivation layer are developed on self-made PbTe/PbSnTe heterojunction infrared detectors and following experiments have been finished: WaterProof properties of ZnS coatings; Anti-reflective properties of PbSnTe materials and their detectors with ZnS coatings, respectively; ageing and stability tests of the PbSnTe detectors with ZnS coatings.All experimental results are excellent: The typical detectivity (D*) of PbSnTe detector is 2.83×1010 cmHz1/2W–1. (with peak wavelength p=9.8 m and cut-off wavelength c=11.7 m). Average detectivity of the PbSnTe detector with ZnS anti-reflective coatings is increased by 45%. Ageing tests indicated that the PbSnTe detectors with ZnS coatings have still high stabilities after several years. They are used successfully in medical infrared imaging systems and other applications.  相似文献   

18.
A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron–electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron–electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron–electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions.  相似文献   

19.
The homogeneity, solid solubility, and chemical bonds in the new materials PbTe, SnTe doped with Ce were investigated. Scanning electron microscope observation and electron probe microanalysis carried out on PbTe crystals doped with Ce, revealed three types of Ce-rich precipitates with following compositions: CeTe2, Ce3Te7, Ce2Te5 and small admixture of PbTe in precipitates. The solubility of Ce in PbTe matrix was estimated as 0.5±0.1 at. %. The solubility of PbTe in CeTe2 and Ce3Te7 was found to be 3±0.5 at. %, but 7±0.5 at. % in the case of Ce2Te5. In SnTe crystal doped with Ce only one kind of precipitate with composition Ce2SnTe5 was found. Cerium solubility in SnTe matrix was estimated to be 1±0.25 at. %. According to our knowledge this is the first report of the identification of Ce2SnTe5 compound. The similar compounds Ce2SnS5 and Ce2SnSe5 are known. Received: 9 December 1998 / Accepted: 9 February 1999 / Published online: 28 April 1999  相似文献   

20.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号