首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multi-reference as well as single-reference quantum mechanical methods were adopted to study the potential energy surface along three possible surface reaction mechanisms of acrylonitrile on the Si(100)-2 x 1 surface. All three reactions occur via stepwise radical mechanisms. According to the computed potential energy surfaces, both [4+2] and [2+2](CN) cycloaddition products resulting from the reactions of surface dimers with the C[triple bond]N of acrylonitrile are expected, due to the negligible activation barriers at the surface. Another possible surface product, [2+2](CC), requires a 16.7 kcal/mol activation energy barrier. The large barrier makes this route much less favorable kinetically, even though this route produces the thermodynamically most stable products. Isomerization reactions among the surface products are very unlikely due to the predicted large activation barriers preventing thermal redistributions of the surface products. As a result, the distribution of the final surface products is kinetically controlled leading to a reinterpretation of recent experiments. An intermediate Lewis acid-base type complex appears in both the [4+2] and [2+2](CN) cycloadditions entrance channels, indicating that the surface may act as an electrophile/Lewis acid toward a strong Lewis base substrate.  相似文献   

2.
Multireference as well as density functional theories in combination with the surface integrated molecular orbital molecular mechanics were adopted to study the surface reactions of cyanogens on Si(100)-2x1 surface. Three different products were identified as minima in the initial surface reaction. Among these, the [2+2] product is both kinetically easily accessible and thermodynamically the most stable. Therefore, it can be considered as the experimentally found strongly bound surface species. Unlike other conjugated systems, the [4+2] product is less stable than the [2+2] product. Subsequent surface isomerization studies revealed that kinetically favorable channels exist between the initially formed low-temperature species and the high-temperature species, indicating that surface morphology changes gradually as a function of surface temperature. Theses two channels eventually lead to the same final surface products, which is consistent with experiment. Current study shows that the subsequent surface isomerizations are the key reactions to better understand the complex surface structures and their properties.  相似文献   

3.
Possible reaction pathways of nitroethylene with the Si(100)-2 x 1 surface have been investigated by unrestricted density functional theory. The facile occurrence of the studied reactions was demonstrated by the low activation energies of the rate-determining steps (1.07-5.23 kcal/mol). It was found that the [4 + 2] cycloaddition reaction of nitroethylene is most kinetically favorable. The isomerization reactions of the addition products were also investigated. The [3 + 2] cycloaddition product may further undergo a rearrangement by overcoming a 12.37 kcal/mol activation energy barrier into an isomer, with an oxygen atom of the nitryl group inserted between two silicon atoms of the Si(100) surface.  相似文献   

4.
Multireference wave functions were used to study the ethylene and 2-butene surface reactions on Si(100) in their lowest energy singlet states. In addition to the diradical pathway, a pi-complex pathway on the ethylene surface was found. The net barrier for the latter process is 4.5 kcal/mol higher than that for the former, making the pi-complex pathway kinetically less accessible. Therefore, although there is a competition between the two initial channels, the diradical path is slightly favored, and rotational isomerization is possible. However, since the initial potential energy surfaces of the two channels are different, depending on experimental conditions, the branching ratio between the two channels may change. Consequently, the combined effects that would favor one channel over the other may not derive directly from the initial reaction barrier. This provides an explanation of the experimental controversy. As a result, the final distributions of surface products may depend on the experimental kinetic environment, especially when the population change due to the rotational isomerization is expected to be very small. A significantly different reaction channel is found in the 2-butene surface reaction on Si(100), in which a methyl hydrogen easily transfers to the surface yielding a new type of surface product other than the expected [2 + 2] cycloaddition product, with a comparatively small activation barrier. Consequently, the overall surface reactions of ethylene and 2-butene may be quite different. Therefore, direct comparisons between ethylene and 2-butene experimental results would be very useful.  相似文献   

5.
The initial and subsequent surface reaction mechanisms of 1,3-cyclohexadiene on the Si(100)-2x1 surface were theoretically explored, focusing on the possible first-neighbor interactions. Five different initial reaction channels leading to nine different surface products were identified, confirming previous experimental reports of inter-dimer structures. Among the nine identified products, five of these surface products are new species that have not previously been reported. Potential energy surface studies reveal that the net reaction barriers within a given channel are very small, indicating that the final product distributions within that channel are determined by thermodynamics. On the other hand, thermal isomerizations between different channels are not expected to occur easily. Therefore, the surface product distributions among the five different channels are more likely to be determined by kinetics. As a result, understanding the relationships among the available reaction channels both kinetically and thermodynamically is essential for properly interpreting the experimental results. The current study shows that the subsequent surface chemical reactions of unsaturated initial surface products are strongly coupled with the first-neighbor interactions.  相似文献   

6.
A combination of experimental and computational studies presents direct proof of a novel reaction pathway that delivers aromatic compounds onto a Si(100)-2 x 1 substrate. Benzylazide chemisorbs on a Si(100)-2 x 1 surface, and this chemisorption is followed by nitrogen elimination, leading to a stable surface adduct based on a Si-Si-N cyclic entity. This reaction occurs via a stable surface intermediate with the surface-bound nitrogen molecule stabilized by the presence of a neighboring aromatic group, which eventually releases nitrogen into the gas phase and forms the final product.  相似文献   

7.
Density functional cluster model calculations have been performed to explore the reaction mechanism for the adsorption of ethylene on Si(100). It is shown that the [2 + 2] cycloaddition of ethylene on a Si=Si dimer of Si (100) surface follows a diradical mechanism, via a pi-complex precursor and a singlet diradical intermediate, and the rate-determining step for the overall reaction is the formation of the diradical intermediate.  相似文献   

8.
We propose the use of the Si atom in the experimentally observed C59Si molecule as a possible way to controllably anchor fullerene molecules on a Si surface, due to the formation of a strong bond to one of the Si surface atoms. All our results are based on ab initio total energy density functional theory, and we obtain that the binding energy is on the order of 2.1 eV, approximately 1.4 eV more stable than a C60 bonded in a similar situation. A possible route to obtain such adsorption via a (C59Si)2 dimer is examined, and we find the whole process to be exothermic by approximately 0.2 eV.  相似文献   

9.
Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit.  相似文献   

10.
Despite a long history of experimental and theoretical investigation, the mechanism of the Diels-Alder (DA) reaction has been controversial since its discovery 80 years ago. From these investigations, two schools of thought have emerged, namely that the reaction can proceed via a concerted, symmetric or asymmetric mechanism or via a nonconcerted mechanism involving a zwitterion or diradical as an intermediate. Here, we employ finite temperature ab initio molecular dynamics simulations, employing forces computed "on the fly" from electronic structure calculations, to investigate the microscopic mechanism of DA adduct formation between 1,3-butadiene and the Si(100)-2x1 surface. Free energy profiles and nonequilibrium trajectories strongly suggest a nonconcerted mechanism that forms a zwitterionic intermediate state. This mechanism, which begins with a nucleophilic attack of the C=C double bond on the positive member of a charge-asymmetric buckled Si-Si dimer, was previously shown to be common to the formation of a wide range of adducts that can form on the surface.  相似文献   

11.
The attachment of methyl methacrylate (MMA) on Si(100)-2x1 was investigated using high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and density functional theory (DFT) calculations. The HREELS spectra of chemisorbed MMA show the disappearance of characteristic vibrations of C=O (1725 cm(-1)) and C(sp(2))-H (3110, 1400, and 962 cm(-1)) coupled with the blue shift of the C=C stretching mode by 34 cm(-1) compared to those of physisorbed molecules. These results clearly demonstrate that both C=C and C=O in MMA directly participate in the interaction with the surface to form a SiCH(2)C(CH(3))=C(OCH(3))OSi species via a [4+2]-like cycloaddition. This binding configuration was further supported by XPS, UPS, and DFT studies.  相似文献   

12.
Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.  相似文献   

13.
We study the influence of germanium atoms upon molecular hydrogen desorption energetics using density functional cluster calculations. A three-dimer cluster is used to model the Si((1-x))Ge(x)(100)-(2x1) surface. The relative stabilities of the various monohydride and clean surface configurations are computed. We also compute the energy barriers for desorption from silicon, germanium, and mixed dimers with various neighboring configurations of silicon and germanium atoms. Our results indicate that there are two desorption channels from mixed dimers, one with an energy barrier close to that for desorption from germanium dimers and one with an energy barrier close to that for desorption from silicon dimers. Coupled with the preferential formation of mixed dimers over silicon or germanium dimers on the surface, our results suggest that the low barrier mixed dimer channel plays an important role in hydrogen desorption from silicon-germanium surfaces. A simple kinetics model is used to show that reasonable thermal desorption spectra result from incorporating this channel into the mechanism for hydrogen desorption. Our results help to resolve the discrepancy between the surface germanium coverage found from thermal desorption spectra analysis, and the results of composition measurements using photoemission experiments. We also find from our cluster calculations that germanium dimers exert little influence upon the hydrogen desorption barriers of neighboring silicon or germanium dimers. However, a relatively larger effect upon the desorption barrier is observed in our calculations when germanium atoms are present in the second layer.  相似文献   

14.
A combined experimental and theoretical study of a model system of multifunctional unsaturated ketones, including ethyl vinyl ketone (EVK), 2-cyclohexen-1-one, and 5-hexen-2-one, on the Si(100)-2 x 1 and Ge(100)-2 x 1 surfaces was performed in order to probe the factors controlling the competition and selectivity of organic reactions on clean semiconductor surfaces. Multiple internal reflection infrared spectroscopy data and density functional theory calculations indicate that EVK and 2-cyclohexen-1-one undergo selective [4 + 2] hetero-Diels-Alder and [4 + 2] trans cycloaddition reactions on the Ge(100)-2 x 1 surface at room temperature. In contrast, on the Si(100)-2 x 1 surface, evidence is seen for significant ene and possibly [2 + 2] C=O cycloaddition side products. The greater selectivity of these compounds on Ge(100) versus Si(100) is explained by differences between the two surfaces in both thermodynamic factors and kinetic factors. With 5-hexen-2-one, for which [4 + 2] cycloaddition is not possible, a small [2 + 2] C=C cycloaddition product is observed on Ge(100) and possibly Si(100), even though the [2 + 2] C=C transition state is calculated to be the highest barrier reaction by several kilocalories per mole. The results suggest that, due to the high reactivity of clean semiconductor surfaces, thermodynamic selectivity and control will play important roles in their selective functionalization, favoring the use of Ge for selective attachment of multifunctional organics.  相似文献   

15.
In this paper, we present a detailed mechanism for the complete decomposition of NH3 to NHx(a) (x = 0-2). Our calculations show that the initial decomposition of NH3 to NH2(a) and H(a) is facile, with a transition-state energy 7.4 kcal mol-1 below the vacuum level. Further decomposition to N(a) or recombination-desorption to NH3(g) is hindered by a large barrier of approximately 46 kcal mol-1. There are two plausible NH2 decomposition pathways: 1) NH2(a) insertion into the surface Si-Si dimer bond, and 2) NH2(a) insertion into the Si-Si backbond. We find that pathway (1) leads to the formation of a surface Si = N unit, similar to a terminal Si = Nt pair in silicon nitride, Si3N4, while pathway (2) leads to the formation of a near-planar, subsurface Si3N unit, in analogy to a central nitrogen atom (Nc) bounded to three silicon atoms in the Si3N4 environment. Based on these results, a plausible microscopic mechanism for the nitridation of the Si(100)-(2 x 1) surface by NH3 is proposed.  相似文献   

16.
We report the direct observation of a precursor state for the cycloaddition reaction (the di-sigma bond formation) of ethylene on Si(100)c(4 x 2) using high-resolution electron energy loss spectroscopy at low temperature, and the meta-stable precursor state is identified as a weakly bonded pi-complex type. The activation energy from the pi-complex precursor to the di-sigma bonded species is experimentally estimated to be 0.2 eV. First-principles calculations support the pi-complex precursor mediated cycloaddition reaction of ethylene on Si(100)c(4 x 2).  相似文献   

17.
Russian Chemical Bulletin - The [4+2] cycloaddition reactions of 1-alkyl-2,3,4,5-tetraphenylphosphole derivatives with N-phenylmaleimide were studied for the first time. The reactions of...  相似文献   

18.
To explore the role of competing forward and reversed chain reactions in the growth of a one-dimensional (1D) molecular line on the Si(100)-(2 x 1)-H surface, controlled experiments were performed with various alkene molecules by scanning tunneling microscopy (STM) at various temperatures. It was observed that the end dangling bond (DB) of a styrene line, fabricated by a chain reaction on the Si(100)-(2 x 1)-H surface at 300 K, initiated a reverse chain reaction at 400 K, leading to the complete disappearance of the styrene line with zero-order desorption kinetics (rate constant k = 1.17 x 10-2 s-1 at 400 K). In the case of 2,4-dimethylstyrene, the reversed chain reaction was observed even at 300 K. These results suggest that the appearance of a molecular line in an STM image is determined by the rates of competing forward and reversed chain reactions at a given temperature. As predicted, 1D lines formed by the DB-initiated chain reaction of 1-hexene and 1-heptene on Si(100)-(2 x 1)-H were observed at 180 K because of the reduced desorption rate, despite the fact that those molecules showed no line growth at 300 K. These results indicate that the scope of forming 1D molecular lines on the Si(100)-(2 x 1)-H surface with various alkenes is much wider than anticipated in previous studies.  相似文献   

19.
A set of 40 finite temperature ab initio molecular dynamics trajectories is employed to investigate the distribution of addition products and underlying microscopic mechanism of the addition of 1,3-butadiene to the Si(100)-2 x 1 surface. The product yields are in good agreement with recent STM measurements and include a Diels-Alder [4 + 2] adduct with a surface dimer acting as the dienophile, a [4 + 2]-like adduct that bridges two dimers within a row, a [4 + 2]-like adduct that bridges two dimers in adjacent rows, and an interdimer [2 + 2]-like adduct. The trajectories indicate that a common mechanism underlies the distribution and is predominantly a nonconcerted stepwise mechanism that proceeds via an intermediate zwitterion composed of a carbocation bonded to a negatively charged surface dimer.  相似文献   

20.
The potential energy surfaces of one, two, and three water molecule sequential adsorptions on the symmetrically chlorinated Si(100)-2 x 1 surface were theoretically explored with SIMOMM:MP2/6-31G(d). The first water molecule adsorption to the surface dimer requires a higher reaction barrier than the subsequent second water molecule adsorption. The lone pair electrons of the incoming water molecule nucleophilically attack the surface Si atom to which the leaving Cl group is bonded, yielding an S(N)2 type transition state. At the same time, the Cl abstracts the H atom of the incoming water molecule, forming a unique four-membered ring conformation. The second water molecule adsorption to the same surface dimer requires a much lower reaction barrier, which is attributed to the surface cooperative effect by the surface hydroxyl group that can form a hydrogen bond with the incoming second water molecule. The third water molecule adsorption exhibits a higher reaction barrier than the first and the second water molecule adsorption channels but yields a thermodynamically more stable product. In general, it is expected that the surface Si-Cl bonds can be subjected to the substitution reactions by water molecules, yielding surface Si-OH bonds, which can be a good initial template for subsequent surface chemical modifications. However, oversaturations can be a competing side reaction under severe conditions, suggesting that the precise control of surface kinetic environments is necessary to tailor the final surface characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号