首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The ability of the GROMOS96 force field to reproduce partition constants between water and two less polar solvents (cyclohexane and chloroform) for analogs of 18 of the 20 naturally occurring amino acids has been investigated. The estimations of the solvation free energies in water, in cyclohexane solution, and chloroform solution are based on thermodynamic integration free energy calculations using molecular dynamics simulations. The calculations show that while the force field reproduces the experimental solvation free energies of nonpolar analogs with reasonable accuracy the solvation free energies of polar analogs in water are systematically overestimated (too positive). The dependence of the calculated free energies on the atomic partial charges was also studied.  相似文献   

2.
We calculated the free energy of solvation of the neutral analogs of 18 amino acid side-chains (not including glycine and proline) using the OPLS all-atom force field in TIP4P water, SPC water, and cyclohexane by molecular dynamics simulation and thermodynamic integration. The average unsigned errors in the free energies of solvation in TIP4P, SPC, and cyclohexane are 4.4, 4.9, and 2.1 kJ/mol respectively. Most of the calculated hydration free energies are not favorable enough compared to experiment. The largest errors are found for tryptophan, histidine, glutamic acid, and glutamine. The average unsigned errors in the free energy of transfer from TIP4P to cyclohexane and from SPC to cyclohexane are 4.0 and 4.1 kJ/mol, respectively. The largest errors, of more than 7.5 kJ/mol, are found for histidine, glutamine, and glutamatic acid.  相似文献   

3.
Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references).  相似文献   

4.
Recently, the GROMOS biomolecular force field parameter set 53A6--which has been parametrized to reproduce experimentally determined free enthalpies of hydration and solvation in cyclohexane of amino acid side-chain analogs--was presented. To investigate the transferability of the new parameter set, we calculated free enthalpies of solvation of a range of polar and apolar compounds in different solvents (methanol, dimethyl sulfoxide (DMSO), acetonitrile, and acetone) from molecular dynamics simulations using the GROMOS 53A6 force field. For methanol and DMSO, parameters were used that are available in the 53A6 parameter set. For acetonitrile, a recently developed model was taken and for acetone, two models available in literature were used. We found that trends in and values for the solvation free enthalpies are in satisfactory agreement with experiment, except for the solvation in acetone for which deviations from experiment can be explained in terms of the properties of the models used.  相似文献   

5.
We investigated the additivity of the solvation free energy of amino acids in homogeneous helices of different length in water and in chloroform. Solvation free energies were computed by multiconfiguration thermodynamic integration involving extended molecular dynamics simulations and by applying the generalized-born surface area solvation model to static helix geometries. The investigation focused on homogeneous peptides composed of uncharged amino acids, where the backbone atoms are kept fixed in an ideal helical conformation. We found nonlinearity especially for short peptides, which does not allow a simple treatment of the interaction of amino acids with their surroundings. For homogeneous peptides longer than five residues, the results from both methods are in quite good agreement and solvation energies are to a good extent additive.  相似文献   

6.
The molecular mechanism of urea-induced protein denaturation is not yet fully understood. Mainly two opposing mechanisms are controversially discussed, according to which either hydrophobic, or polar interactions are the dominant driving force. To resolve this question, we have investigated the interactions between urea and all 20 amino acids by comprehensive molecular dynamics simulations of 22 tripeptides. Calculation of atomic contact frequencies between the amino acids and solvent molecules revealed a clear profile of solvation preferences by either water or urea. Almost all amino acids showed preference for contacts with urea molecules, whereas charged and polar amino acids were found to have slight preferences for contact with water molecules. Particularly strong preference for contacts to urea were seen for aromatic and apolar side-chains, as well as for the protein backbone of all amino acids. Further, protein-urea hydrogen bonds were found to be significantly weaker than protein-water or water-water hydrogen bonds. Our results suggest that hydrophobic interactions are the dominant driving force, while hydrogen bonds between urea and the protein backbone contribute markedly to the overall energetics by avoiding unfavorable unsatisfied hydrogen bond sites on the backbone. In summary, we suggest a combined mechanism that unifies the two current and seemingly opposing views.  相似文献   

7.
The objectives of this study were to gain insights into the structure-lipophilicity relationships of peptides and to propose an improved model for estimating their lipophilicity. First, existing databases were extended to obtain the distribution coefficients of a total of 208 free or protected peptides (di- to pentapeptides). The polarity parameters (Λ) of 23 free amino acids and 19 protected amino acids (AcNH? CHR? CONH2) and of their side chains were calculated from experimental distribution coefficients and computed molecular volumes. An analysis of the polarity parameters revealed that the hydrophobicity of the amino-acid side chains is largely reduced due to the polar field of the backbone. The polarity parameters of the peptides were then obtained in a similar manner and shown to be highly correlated with the sum of the polarity parameters of their side chains, i.e., the lipophilicity of peptides can be calculated from their molecular volume and the sum of their side-chain polarities using the regression established for each individual series of peptides (Fig. 1). This last restriction is essential since the polarity and lipophilic increment of a NH? C*H? CO unit were shown to decrease with increasing length of backbone.  相似文献   

8.
We present an extensive study on hydration thermodynamic properties of analogues of 13 amino acid side chains at 298 K and 1 atm. The hydration free energies DeltaG, entropies DeltaS, enthalpies DeltaH, and heat capacities Deltac(P)() were determined for 10 combinations of force fields and water models. The statistical sampling was extended such that precisions of 0.3, 0.8, 0.8 kJ/mol and 25 J/(mol K) were reached for DeltaG, TDeltaS, DeltaH, and Deltac(P)(), respectively. The three force fields used in this study are AMBER99, GROMOS 53A6, and OPLS-AA; the five water models are SPC, SPC/E, TIP3P, TIP4P, and TIP4P-Ew. We found that the choice of water model strongly influences the accuracy of the calculated hydration entropies, enthalpies, and heat capacities, while differences in accuracy between the force fields are small. On the basis of an analysis of the hydrophobic analogues of the amino acid side chains, we discuss what properties of the water models are responsible for the observed discrepancies between computed and experimental values. The SPC/E water model performs best with all three biomolecular force fields.  相似文献   

9.
The solvation free energy density (SFED) model was modified to extend its applicability and predictability. The parametrization process was performed with a large, diverse set of solvation free energies that included highly polar and ionic molecules. The mean absolute error for 1200 solvation free energies of the 379 neutral molecules in 9 organic solvents and water was 0.40 kcal/mol, and for 90 hydration free energies of ions was 1.7 kcal/mol. Overall, the calculated solvation free energies of a wide range of solute functional groups in diverse solvents were consistent with experimental data.  相似文献   

10.
Tautomeric equilibria have been studied for five-member N-heterocycles and their methyl derivatives in the gas phase and in different solvents with dielectric constants of epsilon = 4.7-78.4. The free energy changes differently for tautomers upon solvation as compared to the gas phase, resulting in a shift of the equilibrium constant in solution. Solvents with increasing dielectric constant produce more negative solute-solvent interaction energies and increasing internal energies. The methyl-substituted imidazole and pyrrazole form delicate equilibria between two tautomeric forms. Depending on the solvent, the methyl-substituted triazoles and tetrazole have one or two major tautomers in solution. When estimating the relative solvation free energies by means of an explicit solvent model and using the FEP/MC method, one observes that the preferred tautomers differ in several cases from those predicted by the continuum solvent model. The 1,2-prototropic shift, as an intramolecular tautomerization path, requires about 50 kcal/mol activation energy for imidazole in the gas phase, and this route is also disfavored in a solution. The calculated activation free energy along the intramolecular path is 48-50 kcal/mol in chloroform and water as compared to a literature value of 13.6 kcal/mol for pyrrazole in DMSO. A molecular dynamics computer experiment favors the formation of an imidazole chain in chloroform, making the 1,3-tautomerization feasible along an intermolecular path in nonprotic solvents. In aqueous solution, one strong N-H...Ow hydrogen bond is formed for each species, whereas all other nitrogens in the ring form weaker, N...HwOw type hydrogen bonds. The tetrahydrofuran solvent acts as a hydrogen bond acceptor and forms N-H...Oether bonds. Molecules of the dichloromethane solvent are in favorable dipole-dipole interactions with the solute. The results obtained are useful in the design of N-heterocyclic ligands forming specified hydrogen bonds with protein side chains.  相似文献   

11.
The hydration free energies of amino acid side chains are an important determinant of processes that involve partitioning between different environments, including protein folding, protein complex formation, and protein-membrane interactions. Several recent papers have shown that calculated hydration free energies for polar and aromatic residues (Trp, His, Tyr, Asn, Gln, Asp, Glu) in several common molecular dynamics force fields differ significantly from experimentally measured values. We have attempted to improve the hydration energies for these residues by modifying the partial charges of the OPLS-AA force field based on natural population analysis of density functional theory calculations. The resulting differences between calculated hydration free energies and experimental results for the seven side chain analogs are less than 0.1 kcal/mol. Simulations of the synthetic Trp-rich peptide Trpzip2 show that the new charges lead to significantly improved geometries for interacting Trp-side chains. We also investigated an off-plane charge model for aromatic rings that more closely mimics their electronic configuration. This model results in an improved free energy of hydration for Trp and a somewhat altered benzene-sodium potential of mean force with a more favorable energy for direct benzene-sodium contact.  相似文献   

12.
Alanyl peptide nucleic acids (alanyl-PNAs) are oligomers based on a regular peptide backbone with alternating configuration of the amino acids. All side chains are modified by covalently linked nucleobases. Alanyl-PNAs form very rigid, well defined, and linear double strands based on hydrogen bonding of complementary strands, stacking, and solvation. Side chain homology was examined by comparing a methylene linker (alanyl-PNA) with an ethylene linker (homoalanyl-PNA), a trimethylene linker (norvalyl-PNA), and PNA sequences with mixed linker length between nucleobase and backbone. Side chain homology in combination with a linear double strand topology turned out to be valuable in order to selectively manipulate pairing selectivity (pairing mode) and base pair stacking.  相似文献   

13.
In order to study the relation between backbone and side-chain ordering in proteins, we have performed multicanonical simulations of deka-peptide chains with various side groups. Glu(10), Gln(10), Asp(10), Asn(10), and Lys(10) were selected to cover a wide variety of possible interactions between the side chains of the monomers. All homopolymers undergo helix-coil transitions. We found that peptides with long side chains that are capable of hydrogen bonding, i.e., Glu(10), and Gln(10), exhibit a second transition at lower temperatures connected with side-chain ordering. This occurs in the gas phase as well as in solvent, although the character of the side-chain structure is different in each case. However, in polymers with short side chains capable of hydrogen bonding, i.e., Asp(10) and Asn(10), side-chain ordering takes place over a wide temperature range and exhibits no phase transition-like character. Moreover, non-backbone hydrogen bonds show enhanced formation and fluctuations already at the helix-coil transition temperature, indicating competition between side-chain and backbone hydrogen bond formation. Again, these results are qualitatively independent of the environment. Side-chain ordering in Lys(10), whose side groups are long and polar, also takes place over a wide temperature range and exhibits no phase transition-like character in both environments. Reasons for the observed chain length threshold and consequences from these results for protein folding are discussed.  相似文献   

14.
One dominant structure has been identified analysing the rotational spectrum of asparagine in sharp contrast with the multiconformational behaviour for other amino acids with polar side chains. This locking of the conformational variety to a single conformer has been ascribed to an intramolecular hydrogen bonding network involving α-amine, α-carboxylic and amide groups.  相似文献   

15.
Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform–water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER‐99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld‐I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld‐I method related to the unstable isolated anionic nitrogen pro‐atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model are in good agreement with the experimental values. © 2018 Wiley Periodicals, Inc.  相似文献   

16.
Quantum mechanical calculations have been used to investigate how the incorporation of an amino group to the Cbeta- or Cgamma-positions of the pyrrolidine ring affects the intrinsic conformational properties of the proline. Specifically, a conformational study of the N-acetyl-N'-methylamide derivatives of four isomers of aminoproline, which differ not only in the beta- or gamma-position of the substituent but also in its cis or trans relative disposition, has been performed. To further understand the role of the intramolecular hydrogen bonds between the backbone carbonyl groups and the amino side group, a conformational study was also performed on the corresponding four analogues of (dimethylamino)proline. In addition, the effects of solvation on aminoproline and (dimethylamino)proline dipeptides have been evaluated using a self-consistent reaction field model, and considering four different solvents (carbon tetrachloride, chloroform, methanol and water). Results indicate that the incorporation of the amino substituent into the pyrrolidine ring affects the conformational properties, with backbone...side chain intramolecular hydrogen bonds detected when it is incorporated in a cis relative disposition. In general, the incorporation of the amino side group tends to stabilize those structures where the peptide bond involving the pyrrolidine nitrogen is arranged in cis. The aminoproline isomer with the substituent attached to the Cgamma-position with a cis relative disposition is the most stable in the gas phase and in chloroform, methanol and water solutions. Replacement of the amino side group by the dimethylamino substituent produces significant changes in the potential energy surfaces of the four investigated (dimethylamino)proline-containing dipeptides. Thus, these changes affect not only the number of minima, which increases considerably, but also the backbone and pseudorotational preferences. In spite of these effects, comparison of the conformational preferences, i.e., the more favored conformers, calculated for different isomers of aminoproline and (dimethylamino)proline dipeptides showed a high degree of consistency for the two families of compounds.  相似文献   

17.
报道了甘氨酸、L-丙氨酸和L-丝氨酸3种典型氨基酸在D-木糖水溶液中的体积性质.  相似文献   

18.
We study the solvation of polar molecules in water. The center of water's dipole moment is offset from its steric center. In common water models, the Lennard-Jones center is closer to the negatively charged oxygen than to the positively charged hydrogens. This asymmetry of water's charge sites leads to different hydration free energies of positive versus negative ions of the same size. Here, we explore these hydration effects for some hypothetical neutral solutes, and two real solutes, with molecular dynamics simulations using several different water models. We find that, like ions, polar solutes are solvated differently in water depending on the sign of the partial charges. Solutes having a large negative charge balancing diffuse positive charges are preferentially solvated relative to those having a large positive charge balancing diffuse negative charges. Asymmetries in hydration free energies can be as large as 10 kcal/mol for neutral benzene-sized solutes. These asymmetries are mainly enthalpic, arising primarily from the first solvation shell water structure. Such effects are not readily captured by implicit solvent models, which respond symmetrically with respect to charge.  相似文献   

19.
A 10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are located in a stable helical region of a transmembrane peptide. The 25-residue peptide (sMTM7) used mimics the cytoplasmic proton hemichannel domain of the seventh transmembrane segment (TM7) from subunit a of H(+)-V-ATPase from Saccharomyces cerevisiae. The three-dimensional structure of peptide sMTM7 in DMSO has been previously solved by NMR spectroscopy. The radial and spatial distributions of the DMSO molecules surrounding the peptide as well as the number of hydrogen bonds between DMSO and the side chains of the amino acid residues involved are extracted from the molecular dynamics simulations. Analysis of the molecular dynamics trajectories shows that the amino acid side chains are fully embedded in DMSO. Polar and positively charged amino acid side chains have dipole-dipole interactions with the oxygen atom of DMSO and form hydrogen bonds. Apolar residues become solvated by DMSO through the formation of a hydrophobic pocket in which the methyl groups of DMSO are pointing toward the hydrophobic side chains of the residues involved. The dual solvation properties of DMSO cause it to be a good membrane-mimicking solvent for transmembrane peptides that do not unfold due to the presence of DMSO.  相似文献   

20.
Summary The stable conformations of N and C protected amino acids of the type: HCONH-CHR-CONH2 of glycine,l-alanine andl-valine have been obtained by fully optimizedab-initio computations with a 3–21G basis set. An original procedure has been devised to extract the side-chain/backbone interaction energy and the backbone and side-chain distortion energies. This enables us to analyze the stabilization/destabilization effects introduced by the side-chain in terms of electrostatic, induction and steric hindrance contributions.Dedicated to Dr. A. Pullman  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号