首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss a multistep variational approach to collective excitations. The approach is developed in a boson formalism (bosons representing particle-hole excitations) and based on an iterative sequence of diagonalizations in subspaces of the full boson space. Purpose of these diagonalizations is that of searching for the best approximation of the ground state of the system. The procedure also leads us to define a set of excited states and, at the same time, of operators which generate these states as a result of their action on the ground state. We examine the cases in which these operators carry one-particle one-hole and up to two-particle two-hole excitations. We also explore the possibility of associating bosons to Tamm-Dancoff excitations and of describing the spectrum in terms of only a selected group of these. Tests within an exactly solvable three-level model are provided.  相似文献   

2.
We derive the formal equivalence of a free massless two-dimensional theory and a free massless two-dimensional boson theory constructed from the bilinear products of the self-same fermion theory. The sense of this equivalence is investigated. Using a box normalization, it is found that the fermion states are Glauber coherent states of bosons, where the boson vacuum is the ground state of the charge sector corresponding to the given fermion state. The massless boson is the Goldstone boson and the degenerate vacua are the ground states of the various charge sectors. A complete operator identity between fermion and boson operators can be obtained, but to do this an additional boson operator must be introduced which cannot be defined in terms of bilinear products of the fermion operators. Doing this makes the charge spectrum continuous.  相似文献   

3.
R S Nikam 《Pramana》1989,32(4):331-339
The Schwinger representation of the SO(8) fermion pair algebra in terms ofd and quasispin vector (u, s, v) bosons is used in deriving a microscopic boson coherent state having both particle-hole and pair excitations. The coherent state is the exact boson image of the HFB variational solution. We can study the shape phase transition and pairing behaviour of the nuclear ground states using the coherent states.  相似文献   

4.
We study the problem of the mapping of fermion collective pairs onto particle-particle bosons and of different fermion operators (hamiltonian, one- and two-particle transfer operators) onto corresponding boson ones and we test the consequences of the truncation to lowest orders of these boson operators. We find that, although the lowest-order terms in the expansion of the operators in boson space lead to matrix elements between boson states which display the qualitative behaviour of the corresponding ones between fermion states, higher-order terms are required to get a quantitative agreement when a large number of particles are involved, as a direct consequence of the increased role of the Pauli principle.  相似文献   

5.
Based on the boson expansion and the so-called Jancovici-Schiff substitution,and approach has been developed to study the microscopic foundation of the interacting boson model.In this work an extension of the approach is made,thus one is able to treat the excitations of such system in which several neutron bosons,a proton boson and a proton-hole boson exist.With the consideration of the proton two-particle excitations we have studied the intruder quasi-rotational bands in double-even Sn nuclei.The Calculated results are compared with experiment and some features of the configuration mixture are discussed.  相似文献   

6.
7.
We take advantage of the symmetry present in quadratic boson and fermion hamiltonians to give a short and simple derivation of their diagonalizations. This is of particular relevance to bosons. Both procedures are critically evaluated and a striking resemblance is pointed out.  相似文献   

8.
9.
T. Otsuka 《Nuclear Physics A》1981,368(2):244-284
Rotational states are investigated in terms of the interacting boson model. A ground-state rotational band is built from a shell-model many-nucleon system. It is shown that the S and D collective nucleon pairs play dominant roles in low-spin states of the band and that this S-D dominance is broken in high-spin states. The intrinsic hamiltonian is constructed from the effective nucleon-nucleon interaction used in the shell model calculation and the intrinsic state of the rotational band is shown to be comprised primarily of S and D pairs. We introduce a λ boson which is a linear combination of s, d and higher angular momentum bosons, and the boson intrinsic state is given by the λ boson condensate state. The s and d bosons constitute approximately 90 % of the λ boson, and the boson intrinsic state reproduces very well the energy and the intrinsic quadrupole moment of the nucleon intrinsic state. The s-d boson hamiltonian is constructed from the S and D pairs, while effects of non S-D pairs are also included by renormalization of the boson hamiltonian. The renormalization is made by using the λ boson. The s-d boson quadrupole operator is derived similarly. The boson hamiltonian and quadrupole operator thus derived reproduce well the exactly calculated values for low-spin states of the rotational band, although the accuracy decreases in high-spin states. It is shown that the IBM possesses the same physical picture of the rotational states as the Nilsson scheme with pairing correlations. It is therefore concluded that the IBM is capable of describing low-lying rotational states.  相似文献   

10.
A unified approach to interacting vacuum excitations and quark confinement is formulated in quantum field theories with symmetry breakdown. Vacuum excitations are shown to be coherent clouds of Goldstone bosons or gauge bosons and are interpreted as new asymptotic extended particle states. They correspond to all dynamically possible space-time dependent Bose condensations of the Goldstone bosons in a given theory. Different configurations of vacuum excitations are connected to one another by a family of invariant boson transformations. As an example, the Nambu theory of interacting vortex strings is derived from a Nambu-Heisenberg quark-gluon field theory. The quarks can be completely confined to the strings while the gluons cluster in quantized magnetic flux bundles of penetration width mv?1 and provide a short range interaction force.  相似文献   

11.
We propose a simple scheme for generating rotating atomic clusters in an optical lattice which produces states with quantum Hall and spin liquid properties. As the rotation frequencies increase, the ground state of a rotating cluster of spin-1 Bose atoms undergoes a sequence of (spin and orbit) transitions, which terminates at an angular momentum L(*) substantially lower than that of the boson Laughlin state. The spin-orbit correlations reflect "fermionization" of bosons facilitated by their spin degrees of freedom. We also show that the density of an expanding group of clusters has a scaling form which reveals the quantum Hall and spin structure of a single cluster.  相似文献   

12.
It is shown that the ground state of deformed nuclei can be considered as a condensate of bosons that do not have a well defined angular momentum. The projection on well defined angular momentum states shows that the s and d bosons take care of nearly 90% of the boson wave function.  相似文献   

13.
本文扼要地介绍了光子数态、热光场态、相干态、压缩态、相位态和中间态等。重点是介绍它们的物理性质。例如,指出相干态在谐振子座标表象中的表示就是带电谐振子在均匀电场中的基态波函数;它的时间演化波包的概率密度分布,形状不随时间变但中心位置随时间作周期振荡。文中对相干态和压缩态等提供了也许是一点新的看法:将相干态、压缩真空态、压缩相干态和相干压缩态等看作是一准玻色子的基态或相干态。而实现的手段可以是原来的幺正算符也可以是投影算符。这样的好处是:(1)对相干态和压缩态间的联系有更深的认识;(2)便于计算和进一步展开等等。文中还对各个态的压缩性、统计性等作了介绍,有的还用图表等演示了它们的非类经典特性。最后,文中还介绍了准概率分布函数、相空间技术以及它们的应用并给出了示例  相似文献   

14.
We discuss the spontaneous symmetry breaking of O(3) and O(5) rotations occurring in an exact ground state of certain schematic IBM-interactions. The ground state is a condensate built from one of six bosons forming a general non-spherical boson basis whose members depend continuously on the deformation parametersβ andγ. Interpreting some of the basis members as Goldstone bosons allows a convenient separation between bosons representing physical and spurious modes. The schematic interactions are shown to be suitable for forming Hamiltonians whose eigenstates are clustered into bands.  相似文献   

15.
We discuss an approach for the treatment of correlations in finite nuclear systems. The approach is based on a boson formalism, the basic boson operators representing elementary particle-hole excitations. We show an application of the method within an exactly solvable multilevel pairing model. We calculate the correlation energy of the system and compare it with the exact results as well as with results obtained within other approaches.  相似文献   

16.
We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space.Based on the deformed boson algebra,we construct coherent state representations.We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations.It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space.  相似文献   

17.
It is well known that the Pauli principle plays a substantial role at low energies because the phonon operators are not ideal boson operators. Calculating the exact commutators between the quasiparticle and phonon operators, one can take into account the Pauli principle corrections. Besides, the ground state correlations due to the quasiparticle interaction in the ground state influence the single-particle fragmentation as well. In this paper, we generalize the basic equations of the quasiparticle-phonon nuclear model to account for both effects mentioned. As an illustration of our approach, calculations on the structure of the low-lying states in 133Ba have been performed. The text was submitted by the authors in English.  相似文献   

18.
It is interesting that a change of nuclear shape may be described in terms of a phase transition. This paper studies the quantum phase transition of the U(5) to SO(6) in the interacting boson model (IBM) on the finite number N of bosons. This paper explores the well-known distinctive signatures of transition from spherical vibrational to γ-soft shape phase in the IBM with the variation of a control parameter. Quantum phase transitions occur as a result of properties of ground and excited states levels. We apply an affine \(\widehat {SU(1,1)}\) approach to numerically solve non-linear Bethe Ansatz equation and point out what observables are particularly sensitive to the transition. The main aim of this work is to describe the most prominent observables of QPT by using IBM in shape coexistence configuration. We calculate energies of excited states and signatures of QPT as energy surface, energy ratio, energy differences, quadrupole electric transition rates and expectation values of boson number operators and show their behavior in QPT. These observables are calculated and examined for 98 ? 102Mo isotopes.  相似文献   

19.
We study number of spin I states for bosons in this paper. We extend Talmi's recursion formulas for number of states with given spin I to boson systems, and we prove empirical formulas for five bosons by using these recursions. We give number of states with given spin I and isospin F for three and four bosons by using sum rules of six-j and nine-j symbols. We also present formulas of states with given spin I and given F-spin for three and four single-l bosons.  相似文献   

20.
The exact solutions of a one-dimensional mixture of spinor bosons and spinor fermions with δ-function interactions are studied. Some new sets of Bethe ansatz equations are obtained by using the graded nest quantum inverse scattering method. Many interesting features appear in the system. For example, the wave function has the SU(2|2) supersymmetry. It is also found that the ground state of the system is partial polarized, where the fermions form a spin singlet state and the bosons are totally polarized. From the solution of Bethe ansatz equations, it is shown that all the momentum, spin and isospin rapidities at the ground state are real if the interactions between the particles are repulsive; while the fermions form two-particle bounded states and the bosons form one large bound state, which means the bosons condensed at the zero momentum point, if the interactions are attractive. The charge, spin and isospin excitations are discussed in detail. The thermodynamic Bethe ansatz equations are also derived and their solutions at some special cases are obtained analytically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号