首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of monaural spectral cues on binaural localization   总被引:2,自引:0,他引:2  
Seven subjects located, monaurally and binaurally, narrow bands of noise originating in the horizontal plane. The stimuli were 1.0 kHz wide and centered at 4.0-14.0 kHz in steps of 0.5 kHz. The loudspeakers, 15 deg apart, were arranged in a semicircle (0-270-180 deg, azimuth). In the first part of the experiment all sounds emanated from the loudspeaker at 270 deg, but their apparent locations varied widely as a function of their center frequency. For each subject, the pattern of location judgments under the binaural listening condition corresponded to that recorded for the monaural condition. In the second part of the experiment the loudspeaker from which each of the same narrow bands of noise emanated was varied in irregular order. Again, monaural location judgments were governed by the frequency content of the noise bands. Binaural location judgments were strongly influenced by the sounds' frequency composition when the stimuli originated from 315-225 deg, notwithstanding the presence of interaural differences in time and intensity. For narrow bands of noise emanating off midline, monaural spectral cues significantly override binaural difference cues, and they also determine the resolution of front-back ambiguities.  相似文献   

2.
In the first experiment, subjects were asked to discriminate whether a sound was emanating from a moving or stationary source. The minimum audible movement angle (MAMA) thus defined was observed to increase as the source velocity increased. MAMA ranged from a low of 8.3 degrees with the slowest velocity employed (90 degrees/s) to a high of 21.2 degrees with the fastest velocity (360 degrees/s). In the second experiment, subjects were asked to localize where the moving source was, at signal on and offset. The results indicate that the apparent onset is displaced in the direction of motion and the amount of this displacement is directly related to source velocity. Less consistent results were observed with signal offset. The present results suggest that the binaural system is relatively insensitive to motion.  相似文献   

3.
In everyday complex listening situations, sound emanating from several different sources arrives at the ears of a listener both directly from the sources and as reflections from arbitrary directions. For localization of the active sources, the auditory system needs to determine the direction of each source, while ignoring the reflections and superposition effects of concurrently arriving sound. A modeling mechanism with these desired properties is proposed. Interaural time difference (ITD) and interaural level difference (ILD) cues are only considered at time instants when only the direct sound of a single source has non-negligible energy in the critical band and, thus, when the evoked ITD and ILD represent the direction of that source. It is shown how to identify such time instants as a function of the interaural coherence (IC). The source directions suggested by the selected ITD and ILD cues are shown to imply the results of a number of published psychophysical studies related to source localization in the presence of distracters, as well as in precedence effect conditions.  相似文献   

4.
Directional properties of the sound transformation at the ear of four intact echolocating bats, Eptesicus fuscus, were investigated via measurements of the head-related transfer function (HRTF). Contributions of external ear structures to directional features of the transfer functions were examined by remeasuring the HRTF in the absence of the pinna and tragus. The investigation mainly focused on the interactions between the spatial and the spectral features in the bat HRTF. The pinna provides gain and shapes these features over a large frequency band (20-90 kHz), and the tragus contributes gain and directionality at the high frequencies (60 to 90 kHz). Analysis of the spatial and spectral characteristics of the bat HRTF reveals that both interaural level differences (ILD) and monaural spectral features are subject to changes in sound source azimuth and elevation. Consequently, localization cues for horizontal and vertical components of the sound source location interact. Availability of multiple cues about sound source azimuth and elevation should enhance information to support reliable sound localization. These findings stress the importance of the acoustic information received at the two ears for sound localization of sonar target position in both azimuth and elevation.  相似文献   

5.
Passive sound-localization acuity and its relationship to vision were determined for the echolocating Jamaican fruit bat (Artibeus jamaicensis). A conditioned avoidance procedure was used in which the animals drank fruit juice from a spout in the presence of sounds from their right, but suppressed their behavior, breaking contact with the spout, whenever a sound came from their left, thereby avoiding a mild shock. The mean minimum audible angle for three bats for a 100-ms noise burst was 10 degrees-marginally superior to the 11.6 degrees threshold for Egyptian fruit bats and the 14 degrees threshold for big brown bats. Jamaican fruit bats were also able to localize both low- and high-frequency pure tones, indicating that they can use both binaural phase- and intensity-difference cues to locus. Indeed, their ability to use the binaural phase cue extends up to 6.3 kHz, the highest frequency so far for a mammal. The width of their field of best vision, defined anatomically as the width of the retinal area containing ganglion-cell densities at least 75% of maximum, is 34 degrees. This value is consistent with the previously established relationship between vision and hearing indicating that, even in echolocating bats, the primary function of passive sound localization is to direct the eyes to sound sources.  相似文献   

6.
Animals live in cluttered auditory environments, where sounds arrive at the two ears through several paths. Reflections make sound localization difficult, and it is thought that the auditory system deals with this issue by isolating the first wavefront and suppressing later signals. However, in many situations, reflections arrive too early to be suppressed, for example, reflections from the ground in small animals. This paper examines the implications of these early reflections on binaural cues to sound localization, using realistic models of reflecting surfaces and a spherical model of diffraction by the head. The fusion of direct and reflected signals at each ear results in interference patterns in binaural cues as a function of frequency. These cues are maximally modified at frequencies related to the delay between direct and reflected signals, and therefore to the spatial location of the sound source. Thus, natural binaural cues differ from anechoic cues. In particular, the range of interaural time differences is substantially larger than in anechoic environments. Reflections may potentially contribute binaural cues to distance and polar angle when the properties of the reflecting surface are known and stable, for example, for reflections on the ground.  相似文献   

7.
Binaural room impulse responses (BRIRs) were measured in a classroom for sources at different azimuths and distances (up to 1 m) relative to a manikin located in four positions in a classroom. When the listener is far from all walls, reverberant energy distorts signal magnitude and phase independently at each frequency, altering monaural spectral cues, interaural phase differences, and interaural level differences. For the tested conditions, systematic distortion (comb-filtering) from an early intense reflection is only evident when a listener is very close to a wall, and then only in the ear facing the wall. Especially for a nearby source, interaural cues grow less reliable with increasing source laterality and monaural spectral cues are less reliable in the ear farther from the sound source. Reverberation reduces the magnitude of interaural level differences at all frequencies; however, the direct-sound interaural time difference can still be recovered from the BRIRs measured in these experiments. Results suggest that bias and variability in sound localization behavior may vary systematically with listener location in a room as well as source location relative to the listener, even for nearby sources where there is relatively little reverberant energy.  相似文献   

8.
9.
10.
Summary The response of a gravitational cilindrical antenna depends, besides on the values of the intensity of the wave and the sensitivity of the antenna, on the angle between the direction of the source and the axis of the antenna and on the polarization angle of the wave. In this paper a device (gravitational astrolabe) that can roughly compute the angular part of the response is presented. It gives the zone of the sky toward which a given antenna is “directed” at a certain time, the angle of polarization that is best “received” and solves easily a number of similar problems.
Riassunto La risposta di un'antenna gravitazionale cilindrica dipende, oltre che dall'intensità dell'onda e dalla sensibilità dell'antenna, dall'angolo tra la direzione della sorgente e l'asse dell'antenna e dall'angolo di polarizzazione dell'onda. In quest'articolo si presenta uno strumento (astrolabio gravitazionale) che può calcolare approssimativamente la parte angolare della risposta. Con esso si possono facilmente calcolare la zona del cielo verso cui è “diretta” una data antenna a un dato istante, l'angolo di polarizzazione che è meglio “ricevuto” e si possono risolvere molti simili problemi.

Резюме Отклик гравитационной цилиндрической антенны зависит, помимо зиачений интенсивности волны и чувствиельности антенны, от угла между направлением на источник и осью антенны и от угла поляризации волны. В этой статье предлагается прибор (гравитационная астролябия), который позволяет грубо определить угловую часть отклика. Результат задает зону неба, по направлению которой ?направлена? антенна в определенное время, определяется угол поляризации и решается ряд аналогичных проблем.
  相似文献   

11.
12.
谢菠荪  刘路路  江建亮 《声学学报》2021,46(6):1223-1233
双耳重放的目标之一是在耳机重放中产生不同方向和距离的虚拟源感知。本文研究了动态双耳Ambisonics重放自由场虚拟源方向和距离信息的简化信号处理方法。该信号处理方法包括两步:第1步是基于目标声场的球谐函数分解,合成采用扬声器的近场Ambisonics重放中逐级重构目标声场的信号;第2步是采用虚拟扬声器重放的方法,用动态头相关函数滤波处理将Ambisonics的扬声器重放信号转换为双耳重放信号并用耳机重放。进一步研究了动态双耳Ambisonics的阶数对定位效果的影响,为简化信号处理提供依据。对重放产生的双耳声压分析表明,5阶动态双耳Ambisonics重放足以提供听觉方向定位和距离感知的重要信息。同时心理声学的实验结果表明,结合声源距离相关的响度因素,5阶动态双耳Ambisonics重放可产生不同方向和1.0 m以下不同近场距离的自由场虚拟源的听觉感知。本文的方法仅需要固定距离的48个均匀空间方向的远场非个性化HRTF处理,实现了信号处理的简化。  相似文献   

13.
14.
For human listeners, cues for vertical-plane localization are provided by direction-dependent pinna filtering. This study quantified listeners' weighting of the spectral cues from each ear as a function of stimulus lateral angle, interaural time difference (ITD), and interaural level difference (ILD). Subjects indicated the apparent position of headphone-presented noise bursts synthesized in virtual auditory space. The synthesis filters for the two ears either corresponded to the same location or to two different locations separated vertically by 20 deg. Weighting of each ear's spectral information was determined by a multiple regression between the elevations to which each ear's spectrum corresponded and the vertical component of listeners' responses. The apparent horizontal source location was controlled either by choosing synthesis filters corresponding to locations on or 30 deg left or right of the median plane or by attenuating or delaying the signal at one ear. For broadband stimuli, spectral weighting and apparent lateral angle were determined primarily by ITD. Only for high-pass stimuli were weighting and lateral angle determined primarily by ILD. The results suggest that the weighting of monaural spectral cues and the perceived lateral angle of a sound source depend similarly on ITD, ILD, and stimulus spectral range.  相似文献   

15.
The potential of spherical-harmonics beamforming (SHB) techniques for the auralization of target sound sources in a background noise was investigated and contrasted with traditional head-related transfer function (HRTF)-based binaural synthesis. A scaling of SHB was theoretically derived to estimate the free-field pressure at the center of a spherical microphone array and verified by comparing simulated frequency response functions with directly measured ones. The results show that there is good agreement in the frequency range of interest. A listening experiment was conducted to evaluate the auralization method subjectively. A set of ten environmental and product sounds were processed for headphone presentation in three different ways: (1) binaural synthesis using dummy head measurements, (2) the same with background noise, and (3) SHB of the noisy condition in combination with binaural synthesis. Two levels of background noise (62, 72 dB SPL) were used and two independent groups of subjects (N=14) evaluated either the loudness or annoyance of the processed sounds. The results indicate that SHB almost entirely restored the loudness (or annoyance) of the target sounds to unmasked levels, even when presented with background noise, and thus may be a useful tool to psychoacoustically analyze composite sources.  相似文献   

16.
A human psychoacoustical experiment is described that investigates the role of the monaural and interaural spectral cues in human sound localization. In particular, it focuses on the relative contribution of the monaural versus the interaural spectral cues towards resolving directions within a cone of confusion (i.e., directions with similar interaural time and level difference cues) in the auditory localization process. Broadband stimuli were presented in virtual space from 76 roughly equidistant locations around the listener. In the experimental conditions, a "false" flat spectrum was presented at the left eardrum. The sound spectrum at the right eardrum was then adjusted so that either the true right monaural spectrum or the true interaural spectrum was preserved. In both cases, the overall interaural time difference and overall interaural level difference were maintained at their natural values. With these virtual sound stimuli, the sound localization performance of four human subjects was examined. The localization performance results indicate that neither the preserved interaural spectral difference cue nor the preserved right monaural spectral cue was sufficient to maintain accurate elevation judgments in the presence of a flat monaural spectrum at the left eardrum. An explanation for the localization results is given in terms of the relative spectral information available for resolving directions within a cone of confusion.  相似文献   

17.
It is often enough to localize environmental sources of noise from different directions in a plane. This can be accomplished with a circular microphone array, which can be designed to have practically the same resolution over 360°. The microphones can be suspended in free space or they can be mounted on a solid cylinder. This investigation examines and compares two techniques based on such arrays, the classical delay-and-sum beamforming and an alternative method called circular harmonics beamforming. The latter is based on decomposing the sound field into a series of circular harmonics. The performance of the two signal processing techniques is examined using computer simulations, and the results are validated experimentally.  相似文献   

18.
Role of spectral cues in median plane localization   总被引:6,自引:0,他引:6  
The role of spectral cues in the sound source to ear transfer function in median plane sound localization is investigated in this paper. At first, transfer functions were measured and analyzed. Then, these transfer functions were used in experiments where sounds from a source on the median plane were simulated and presented to subjects through headphones. In these simulation experiments, the transfer functions were smoothed by ARMA models with different degrees of simplification to investigate the role of microscopic and macroscopic patterns in the transfer functions for median plane localization. The results of the study are summarized as follows: (1) For front-rear judgment, information derived from microscopic peaks and dips in the low-frequency region (below 2 kHz) and the macroscopic patterns in the high-frequency region seems to be utilized; (2) for judgment of elevation angle, major cues exist in the high-frequency region above 5 kHz. The information in macroscopic patterns is utilized instead of that in small peaks and dips.  相似文献   

19.
Previous empirical and analytical investigations into human sound localization have illustrated that the head-related transfer function (HRTF) and interaural cues are affected by the acoustic material properties of the head. This study utilizes a recent analytical treatment of the sphere scattering problem (which accounts for a hemispherically divided surface boundary) to investigate the contribution of hair to the auditory cues below 5 kHz. The hair is modeled using a locally reactive equivalent impedance parameter, and cue changes are discussed for several cases of measured hair impedance. The hair is shown to produce asymmetric perturbations to the HRTF and the interaural time and level differences. The changes in the azimuth plane are explicated via analytical examination of the surface pressure variations with source angle. Experimental HRTFs obtained using a sphere with and without a hemispherical covering of synthetic hair show a good agreement with analytical results. Additional experimental and analytical investigations illustrate that the relative contribution of the hair remains robust, regardless of the placement of the pinnas, or inclusion of a cylindrical neck.  相似文献   

20.
Contribution of spectral cues to human sound localization   总被引:1,自引:0,他引:1  
The contribution of spectral cues to human sound localization was investigated by removing cues in 1/2-, 1- or 2-octave bands in the frequency range above 4 kHz. Localization responses were given by placing an acoustic pointer at the same apparent position as a virtual target. The pointer was generated by filtering a 100-ms harmonic complex with equalized head-related transfer functions (HRTFs). Listeners controlled the pointer via a hand-held stick that rotated about a fixed point. In the baseline condition, the target, a 200-ms noise burst, was filtered with the same HRTFs as the pointer. In other conditions, the spectral information within a certain frequency band was removed by replacing the directional transfer function within this band with the average transfer of this band. Analysis of the data showed that removing cues in 1/2-octave bands did not affect localization, whereas for the 2-octave band correct localization was virtually impossible. The results obtained for the 1-octave bands indicate that up-down cues are located mainly in the 6-12-kHz band, and front-back cues in the 8-16-kHz band. The interindividual spread in response patterns suggests that different listeners use different localization cues. The response patterns in the median plane can be predicted using a model based on spectral comparison of directional transfer functions for target and response directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号