首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lattice dynamics of solid hydrogen chloride is studied, assuming a rigid molecule, in the harmonic and pair potential (Lennard-Jones interaction) approximation between atoms with the inclusion of electrostatic interactions between point dipoles placed on atomic centres. The potential parameters for each of the different non-bonded atom pairs were obtained by means of an optimization routine to give a least-squares fit to observed zone centre (k = 0) frequencies, equilibrium conditions and lattice energy of the lattice.  相似文献   

2.
Three different dimers of the adenine–thymine (A‐T) base pair are studied to point out the changes of important properties (structure, atomic charge, energy and so on) induced by coupling between the movement of the atoms in the hydrogen bonds and the stacking interaction. The comparison of these results with those for the A‐T monomer system explains the role of the stacking interaction in the hydrogen‐atom transfer in this biologically important base pair. The results support the idea that this coupling depends on the exact dimer considered and is different for the N? N and N? O hydrogen bonds. In particular, the correlation between the hydrogen transfer and the stacking interaction is more relevant for the N? N bridge than for the N? O one. Also, the two different mechanisms of two‐hydrogen transfer (step by step and concerted) can be modified by the stacking interaction between the base pairs.  相似文献   

3.
The nature of H‐H interaction between ortho‐hydrogen atoms in planar biphenyl is investigated by two different atomic energy partitioning methods, namely fractional occupation iterative Hirshfeld (FOHI) and interacting quantum atoms (IQA), and compared with the traditional virial‐based approach of quantum theory of atoms in molecules (QTAIM). In agreement with Bader's hypothesis of H? H bonding, partitioning the atomic energy into intra‐atomic and interatomic terms reveals that there is a net attractive interaction between the ortho‐hydrogens in the planar biphenyl. This falsifies the classical view of steric repulsion between the hydrogens. In addition, in contrast to the traditional QTAIM energy analysis, both FOHI and IQA show that the total atomic energy of the ortho‐hydrogens remains almost constant when they participate in the H‐H interaction. Although, the interatomic part of atomic energy of the hydrogens plays a stabilizing role during the formation of the H? H bond, it is almost compensated by the destabilizing effects of the intra‐atomic parts and consequently, the total energy of the hydrogens remains constant. The trends in the changes of intra‐atomic and interatomic energy terms of ortho‐hydrogens during H? H bond formation are very similar to those observed for the H2 molecule. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
5.
Previously, we have introduced the linear scaling coupled cluster (CC) divide-expand-consolidate (DEC) method, using an occupied space partitioning of the standard correlation energy. In this article, we show that the correlation energy may alternatively be expressed using a virtual space partitioning, and that the Lagrangian correlation energy may be partitioned using elements from both the occupied and virtual partitioning schemes. The partitionings of the correlation energy leads to atomic site and pair interaction energies which are term-wise invariant with respect to an orthogonal transformation among the occupied or the virtual orbitals. Evaluating the atomic site and pair interaction energies using local orbitals leads to a linear scaling algorithm and a distinction between Coulomb hole and dispersion energy contributions to the correlation energy. Further, a detailed error analysis is performed illustrating the error control imposed on all components of the energy by the chosen energy threshold. This error control is ultimately used to show how to reduce the computational cost for evaluating dispersion energy contributions in DEC.  相似文献   

6.
A polarizable model potential (PMP) function for adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) is developed on the basis of ab initio molecular orbital calculations at the MP2/6-31+G* level. The PMP function consists of Coulomb, van der Waals, and polarization terms. The permanent atomic charges of the Coulomb term are determined by using electrostatic potential (ESP) optimization. The multicenter polarizabilities of the polarization term are determined by using polarized one-electron potential (POP) optimization in which the electron density changes induced by a test charge are target. Isotropic and anisotropic polarizabilities are adopted as the multicenter polarizabilities. In the PMP calculations using the optimized parameters, the interaction energies of Watson-Crick type A-T and C-G base pairs were -15.6 and -29.4 kcal/mol, respectively. The interaction energy of Hoogsteen type A-T base pair was -17.8 kcal/mol. These results reproduce well the quantum chemistry calculations at the MP2/6-311++G(3df,2pd) level within the differences of 0.6 kcal/mol. The stacking energies of A-T and C-G were -9.7 and -10.9 kcal/mol. These reproduce well the calculation results at the MP2/6-311++G (2d,2p) level within the differences of 1.3 kcal/mol. The potential energy surfaces of the system in which a sodium ion or a chloride ion is adjacent to the nucleic acid base are calculated. The interaction energies of the PMP function reproduced well the calculation results at the MP2/6-31+G* or MP2/6-311++G(2d,2p) level. The reason why the PMP function reproduces well the high-level quantum mechanical interaction energies is addressed from the viewpoint of each energy terms.  相似文献   

7.
针对嵌插型抗癌药物米托蒽醌(mitoxantrone,MTX)同B-DNA间作用模式的争议,采用分子模拟方法研究了米托蒽醌分子与B-DNA分子的相互作用.结果表明:米托蒽醌分子插入到B-DNA中有大小沟选择性及碱基对特异性,更倾向从小沟方向插入到DNA分子中;对5'-CG碱基对有特异性识别.通过详细能量项的分析,揭示了米托蒽醌插入DNA分子的驱动力及对碱基的特异性识别作用主要是空间相互作用特别是静电相互作用.在最佳作用位点复合物的构象分析则表明蒽醌环只有一部分插入碱基对中,侧链在小沟中延磷酸基骨架以3'-5'方向伸展,并通过静电作用进一步增强米托蒽醌与B-DNA的结合.  相似文献   

8.
The paper gives an overview, generalization and systematization of the different energy decomposition schemes we have devised in the last few years by using both the 3-D analysis (the atoms are represented by different parts of the physical space) and the Hilbert space analysis in terms of the basis orbitals assigned to the individual atoms. The so called "atomic decomposition of identity" provides us the most general formalism for analyzing different physical quantities in terms of individual atoms or pairs of atoms. (The "atomic decomposition of identity" means that we present the identity operator as a sum of operators assigned to the individual atoms.) By proper definitions of the atomic operators, both Hilbert-space and the different 3-D decomposition schemes can be treated on an equal footing. Several different but closely related energy decomposition schemes have been proposed for the Hilbert space analysis. They differ by exact or approximate treatment of the three- and four-center integrals and by considering the kinetic energy as a part of the atomic Hamiltonian or as having genuine two-center components, too. (Also, some finite basis correction terms may be treated in different manners.) The exact schemes are obtained by using the "atomic decomposition of identity". In the approximate schemes a projective integral approximation is also introduced, thus the energy components contain only one- and two-center integrals. The diatomic energy contributions have also been decomposed into terms of different physical nature (electrostatic, exchange etc.) The 3-D analysis may be performed either in terms of disjunct atomic domains, as in the case of the AIM formalism, or by using the so called "fuzzy atoms" which do not have sharp boundaries but exhibit a continuous transition from one to another. The different schemes give different numbers, but each is capable of reflecting the most important intramolecular interactions as well as the secondary ones--e.g. intramolecular interactions of type C-H[...]O.  相似文献   

9.
We present a polarisable multipolar interatomic electrostatic potential energy function for force fields and describe its application to the pilot molecule MeNH-Ala-COMe (AlaD). The total electrostatic energy associated with 1, 4 and higher interactions is partitioned into atomic contributions by application of quantum chemical topology (QCT). The exact atom–atom interaction is expressed in terms of atomic multipole moments. The machine learning method Kriging is used to model the dependence of these multipole moments on the conformation of the entire molecule. The resulting models are able to predict the QCT-partitioned multipole moments for arbitrary chemically relevant molecular geometries. The interaction energies between atoms are predicted for these geometries and compared to their true values. The computational expense of the procedure is compared to that of the point charge formalism.  相似文献   

10.
Traditionally force fields express 1,3 and 1,4 interactions as bonded terms via potentials that involve valence and torsion angles, respectively. These interactions are not modeled by point charge terms, which are confined to electrostatic interactions between more distant atoms (1,n where n>4). Here we show that both 1,3 and 1,4 interactions can be described on the same footing as 1,n (n>4) interactions by a convergent multipole expansion of the Coulomb energy of the participating atom pairs. The atomic multipole moments are generated by the theory of quantum chemical topology. The procedure to make the multipole expansion convergent is based on a "shift procedure" described in earlier work [L. Joubert and P. L. A. Popelier, Molec. Phys. 100, 3357 (2002)].  相似文献   

11.
The (?, ψ) energy surface of blocked alanine (N-acetyl–N′-methyl alanineamide) was calculated at the Hartree-Fock (HF)/6-31G* level using ab initio molecular orbital theory. A collection of six electrostatic models was constructed, and the term electrostatic model was used to refer to (1) a set of atomic charge densities, each unable to deform with conformation; and (2) a rule for estimating the electrostatic interaction energy between a pair of atomic charge densities. In addition to two partial charge and three multipole electrostatic models, this collection includes one extremely detailed model, which we refer to as nonspherical CPK. For each of these six electrostatic models, parameters—in the form of partial charges, atomic multipoles, or generalized atomic densities—were calculated from the HF/6-31G* wave functions whose energies define the ab initio energy surface. This calculation of parameters was complicated by a problem that was found to originate from the locking in of a set of atomic charge densities, each of which contains a small polarization-induced deformation from its idealized unpolarized state. It was observed that the collective contribution of these small polarization-induced deformations to electrostatic energy differences between conformations can become large relative to ab initio energy differences between conformations. For each of the six electrostatic models, this contribution was reduced by an averaging of atomic charge densities (or electrostatic energy surfaces) over a large collection of conformations. The ab initio energy surface was used as a target with respect to which relative accuracies were determined for the six electrostatic models. A collection of 42 more complete molecular mechanics models was created by combining each of our six electrostatic models with a collection of seven models of repulsion + dispersion + intrinsic torsional energy, chosen to provide a representative sample of functional forms and parameter sets. A measure of distance was defined between model and ab initio energy surfaces; and distances were calculated for each of our 42 molecular mechanics models. For most of our 12 standard molecular mechanics models, the average error between model and ab initio energy surfaces is greater than 1.5 kcal/mol. This error is decreased by (1) careful treatment of the nonspherical nature of atomic charge densities, and (2) accurate representation of electrostatic interaction energies of types 1—2 and 1—3. This result suggests an electrostatic origin for at least part of the error between standard model and ab initio energy surfaces. Given the range of functional forms that is used by the current generation of protein potential functions, these errors cannot be corrected by compensating for errors in other energy components. © 1995 by John Wiley & Sons, Inc.  相似文献   

12.
We have quantum chemically analyzed the influence of nucleotide composition and sequence (that is, order) on the stability of double-stranded B-DNA triplets in aqueous solution. To this end, we have investigated the structure and bonding of all 32 possible DNA duplexes with Watson–Crick base pairing, using dispersion-corrected DFT at the BLYP-D3(BJ)/TZ2P level and COSMO for simulating aqueous solvation. We find enhanced stabilities for duplexes possessing a higher GC base pair content. Our activation strain analyses unexpectedly identify the loss of stacking interactions within individual strands as a destabilizing factor in the duplex formation, in addition to the better-known effects of partial desolvation. Furthermore, we show that the sequence-dependent differences in the interaction energy for duplexes of the same overall base pair composition result from the so-called “diagonal interactions” or “cross terms”. Whether cross terms are stabilizing or destabilizing depends on the nature of the electrostatic interaction between polar functional groups in the pertinent nucleobases.  相似文献   

13.
Classical force fields describe the interaction between atoms that are bonded or nonbonded via simple potential energy expressions. Their parameters are often determined by fitting to ab initio energies and electrostatic potentials. A direct quantum chemical guide to constructing a force field would be the atom-atom partitioning of the energy of molecules and van der Waals complexes relevant to the force field. The authors used the theory of quantum chemical topology to partition the energy of five systems [H2, CO, H2O, (H2O)2, and (HF)2] in terms of kinetic, Coulomb, and exchange intra-atomic and interatomic contributions. The authors monitored the variation of these contributions with changing bond length or angle. Current force fields focus only on interatomic interaction energies and assume that these purely potential energy terms are the only ones that govern structure and dynamics in atomistic simulations. Here the authors highlight the importance of self-energy terms (kinetic and intra-atomic Coulomb and exchange).  相似文献   

14.
15.
An analysis of the LCAO Hamiltonian is performed in terms of a “mixed” formulation of the second quantization for nonorthogonal orbitals, compressing the different interactions to one- and two-center terms as far as possible by performing appropriate projections. For this purpose an operator of atomic charge is also introduced, the expectation values of which are the Mulliken gross atomic populations on the individual atoms. The LCAO Hamiltonian is decomposed into terms having different physical meaning and significance: (i) sum of effective atomic Hamiltonians; (ii) the electrostatic interactions in the point-charge approximation; (iii) the electrostatic effects connected with the deviation of the actual charge distribution from the pointlike one; (iv) two-center overlap effects; (v) finite basis (“counterpoise”) correction terms related to the individual atoms; and (vi) similar finite basis correction terms with respect to the two-center interactions. Only terms of types (i) to (iv), containing no three- or four-center integrals, are considered as having physical significance. Based on the analysis of the Hamiltonian, an energy partitioning scheme is developed, and explicit expressions are given for one- and two-center (and basis extension) components of the SCF energy. The approach is also applied to the problem of intermolecular interactions, and an explicit formula is given permitting calculation of the “counterpoise” part of the supermolecule energy by properly taking into account that it depends not only on the extension of the basis, but also on the occupation of the additional orbitals in the intervening molecule—a factor completely overlooked in the usual scheme of calculations.  相似文献   

16.
A Hirshfeld decomposition scheme of the Hartree-Fock total molecular energy into atomic energies is presented. The calculations are performed by direct numerical integration and the results are compared for a set of 28 molecules containing different kinds of atoms. The calculated atomic energies show a strong dependency on changes of atomic electron population and hybridization. Linear correlations are found between the energy and the population for H, these being related to the electronegativity of this atom and to the external potential created by the remaining atoms. The proposed energy partitioning scheme appears to be useful for studies such as proton acidity, the anomeric effect and group transferability, and allows atomic virial ratios to be obtained. Finally, the atomic potential energies are found to mimic trends based on exact expressions as well as trends displayed by molecular quantities, thus lending credibility to the partitioning scheme used.  相似文献   

17.
The intermolecular electronic correlation contributions to the Coulomb component of the nucleic acid base interaction energy are estimated. The Coulomb energy is evaluated with the use of atomic monopoles, which are determined from the π-electronic densities calculated by the SCF method and by employing partially or completely optimized APSG wave functions. When the correlation is thus taken into account, a systematic decrease in atomic charges occurs; this effect is considerable only if an optimized orbital set is used. As a result, the Coulomb interaction energy due to the π-electronic atoms decreases from ?1.13 to ?0.85 kcal/mol for the AT pair and from ?7.15 to ?4.61 kcal/mol for the GC pair.  相似文献   

18.
The adjacent lone pair (ALP) effect is an experimental phenomenon in certain nitrogenous heterocyclic systems exhibiting the preference of the products with lone pairs separated over other isomers with lone pairs adjacent. A theoretical elucidation of the ALP effect requires the decomposition of intramolecular energy terms and the isolation of lone pair–lone pair interactions. Here we used the block‐localized wavefunction (BLW) method within the ab initio valence bond (VB) theory to derive the strictly localized orbitals which are used to accommodate one‐atom centered lone pairs and two‐atom centered σ or π bonds. As such, interactions among electron pairs can be directly derived. Two‐electron integrals between adjacent lone pairs do not support the view that the lone pair–lone pair repulsion is responsible for the ALP effect. Instead, the disabling of π conjugation greatly diminishes the ALP effect, indicating that the reduction of π conjugation in deprotonated forms with two σ lone pairs adjacent is one of the major causes for the ALP effect. Further electrostatic potential analysis and intramolecular energy decomposition confirm that the other key factor is the favorable electrostatic attraction within the isomers with lone pairs separated.  相似文献   

19.
The electrostatic (ES) energy of each residue was for the first time quantitatively evaluated in a flavin mononucleotide binding protein (FBP). A residue electrostatic energy (RES) was obtained as the sum of the ES energies between atoms in each residue and all other atoms in the FBP dimer using atomic coordinates obtained by a molecular dynamics (MD) simulation. ES is one of the most important energies among the interaction energies in a protein. It is determined from the RES, the residues which mainly contribute to stabilize the structure of each subunit, and the binding energy between two subunits can be estimated. The RES of all residues in subunit A (Sub A) and subunit B (Sub B) were attractive forces, even though the residues contain net negative or positive charges. This reveals that the ES energies of any of the residues can contribute to stabilize the protein structure. The total binding ES energy over all residues among the subunits was distributed between −0.2 to −1.2 eV (mean = −0.67 eV) from the MD simulation time.  相似文献   

20.
The problem of evaluating the long range terms (electrostatic, polarization, dispersion) of the interaction energy between molecules at intermediate distances (i.e. distances of the order of magnitude of the molecular dimensions) is considered. Instead of being approximated by its dipole part, the exact interaction Hamiltonian is treated as proposed by Longuet-Higgins [11], i.e. the matrix elements are interpreted as electrostatic interactions between state and transition charge distributions. These charge distributions are approximated in a systematic way by sets of point charges (localized on the atoms) or sets of dipoles (localized on the bonds). The various contributions to the energy may then be expressed in terms of atomic net charges and bond polarizabilities. More refined approximations of the charge distributions could be used and correspondingly improved formulae could be derived: as an example, a formula for the σ-π dispersion energy is derived, where the σ charge distributions are approximated by bond transition dipoles (leading to σ bond polarizabilities in the final formula) while the π charge distributions are approximated by atomic charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号