首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A heated horizontal heat transfer tube was installed 14.8 cm above the distributor plate in a square fluid bed measuring 30.5 × 30.5 cm. Four different Geldart B sized particle beds were used (sand of two different distributions, an abrasive and glass beads) and the bed was fluidized with cold air. The tube was instrumented with surface thermocouples around half of the tube circumference and with differential pressure ports that can be used to infer bubble presence. Numerical execution of the transient conduction equation for the tube allowed the local time-varying heat transfer coefficient to be extracted. Data confirm the presence of the stagnant zone on top of the tube associated with low superficial velocities. Auto-correlation of thermocouple data revealed bubble frequencies and the cross-correlation of thermal and pressure events confirmed the relationship between the bubbles and the heat transfer events. In keeping with the notion of a “Packet renewal” heat transfer model, the average heat transfer coefficient was found to vary in sympathy with the root-mean square amplitude of the transient heat transfer coefficient.  相似文献   

2.
An innovative horizontal swirling fluidized bed (HSFB) with a rectangular baffle in the center of an air distributor and three layers of horizontal secondary air nozzles located at each corner of fluidized bed was developed. Experiments on heat transfer characteristics were conducted in a cold HSFB test model. Heat transfer coefficients between immersed tubes and bed materials in the HSBF were measured with the help of a fast response heat transfer probe. The influences of fluidization velocity, particle size of bed materials, measurement height, probe orientation, and secondary air injection, etc. on heat transfer coefficients were intensively investigated. Test results indicated that heat transfer coefficients increase with fluidization velocity, and reach their maximum values at 1.5-3 times of the minimum fluidization velocity. Heat transfer coefficients are variated along the circumference of the probe, and heat transfer coefficients on the leeward side of the probe are larger than that on the windward side of the probe. Heat transfer coefficients decrease with increasing of measurement height; heat transfer coefficients of the longitudinal probe are larger than that of the transverse probe. The proper secondary air injection and particle size of bed materials can generate a preferred hydrodynamics in the dense zone and enhance heat transfer in a HSFB.  相似文献   

3.
The fluidized beds are widely used in a variety of industries where heat transfer properties of the fluidized system become important for successful operation. Fluidized are preferred in heat recovery processes because of their unique ability of rapid heat transfer and uniform temperature. Fine powders handling and processing technologies have received widespread attention due to increased use of fine powders in the manufacture of drugs, cosmetics, plastics, catalysts, energetics and other advanced materials. A better understanding of fluidization behavior of fine powders is of great importance in applications involving heat transfer, mass transfer, mixing, transporting and modifying surface properties etc. The difficulty in putting the fine powders in suspension with the fluidizing gas is related to the cohesive structure and to the physical forces between the primary particles. The sound waves agitate bubbling and this results in improving solids mixing in the fluidized bed. The improved solids mixing results in uniform and smooth fluidization, which leads to better heat transfer rates in the fluidized bed.  相似文献   

4.
This work presents an experimental study of the heat transfer in a vibrofluidized bed and an investigation of the vibrofluidized bed coating process of thin copper plates.At superficial velocities close to that of minimum fluidization the heat transfer coefficient increases with the air flow rate and also with the immersion depth in the bed. It is independent of the initial object temperature.For different experimental conditions the obtained vibrofluidized bed coating thicknesses increase with the initial object temperature and immersion time. When compared with the theoretical predictions calculated for a regular fluidized bed, they show a good agreement. The temperature-time histories of the coated object are also recorded and compared to theoretical results.  相似文献   

5.
A novel gas fluidized-bed heat exchanger with a very small static bed height has been developed for a heat-exchanging system using a low-pressure fan. This fluidized bed is composed of a multislit distributor, a single row of 8 mm diameter tubes, and glass beads 48–195 μm in diameter. The measured performance of heat transfer is excellent and that of fluidization is satisfactory, in spite of the static bed height being as small as 13 mm. In the best case, the test fluidized bed exhibited a heat transfer performance comparable to that of a conventional fluidized bed with a perforated plate distributor and a static bed height of 150 mm, and showed one-fourteenth the pressure loss.  相似文献   

6.
Experiments were performed to study the effect of air fluidization velocity, particle diameter, tube diameter, and pitch between tubes on heat-transfer coefficient for a bundle of horizontal tubes immersed in an aggregative fluidized bed. Not only horizontal but also vertical distributions of the heat-transfer coefficients within the bundle were also extensively determined. The heat-transfer coefficient and its maximum value were found to be dependent on the particle diameter, the air fluidization velocity, and the gap between the tubes in the bundle. The proposed correlation for the maximum heat-transfer coefficient was in good agreement with the present results.  相似文献   

7.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

8.
An experimental study was performed to determine the melting heat transfer characteristics along a horizontal heated circular tube immersed in a solid-air-liquid three-phase fluidized liquid ice bed. A mixture of fine ice particles and ethylene glycol acqueous solution was adopted as the liquid ice for the test. Measurements were carried out for a range of parameters such as airflow rate, heated tube diameter, and initial concentration of acqueous binary solution. It was found that the heat transfer coefficient for the fluidized liquid ice bed might be more than 20 times as large as that for the fixed liquid ice bed.  相似文献   

9.
Bed-to-surface heat transfer in a circulating fluidized bed   总被引:1,自引:0,他引:1  
 The heat transfer characteristics between a circulating fluidized bed and a surface immersed inside it are investigated. This paper presents a statistical model describing the mechanism of heat transfer and the relationship between the heat transfer coefficient and the main parameters of the bed. The proposed model yields a satisfactory representation of heat transfer process in the circulating fluidized bed (CFB), it is consistent with experimental results and other researchers results. Received on 13 December 1999 / Published online: 29 November 2001  相似文献   

10.
The role of particle diameter in the heat transfer of a gas–solid suspension to the walls of a circulating fluidized bed was studied for particles of uniform size. This work reports and analyzes new experimental results for the local bed to wall heat transfer coefficient, not including the radiation component, in a long active heat transfer surface length laboratory bed, which extend previous findings and clear up some divergences. The research included determining the effects of extension and location of the heat transfer surface, circulating solids mass flux and average suspension density. An experimental set-up was built, with a 72.5 mm internal diameter riser, 6.0 m high, composed of six double pipe heat exchangers, 0.93 m high, located one above the other. Five narrow sized diameter quartz sand particles − 179, 230, 385, 460 and 545 μm − were tested. Temperature was kept approximately constant at 423 K and the superficial gas velocity at 10.5 m/s. The major influence of suspension density on the wall heat transfer was confirmed, and contrary to other authors, a significant effect of particle size was found, which becomes more relevant for smaller particles and increasing suspension density. It was observed that the extension of the heat transfer surface area did not influence the heat transfer coefficient for lengths greater than 0.93 m.The heat transfer surface location did not show any effect, except for the exchanger at the botton of the riser. A simple correlation was proposed to calculate the heat transfer coefficient as a function of particle diameter and suspension density.  相似文献   

11.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

12.
Under the conditions of developed fluidization there are intensive fluctuations both in the fluidizing medium and in the dispersed solid phase. These motions have a decisive effect on the rheologlcal properties of the fluidized bed, and on the chemical reactions and transport processes taking place in it [1], Thus, for example, in the experiments of Wicke and Fetting [2], who investigated the heat transfer between a fluidized bed and the walls of a heated container, the effective heat transfer coefficient was found to be higher by an order of magnitude than the corresponding result for a fluidized bed held down by a wire grid so that the random motion of the solid phase was reduced. It is clear that the initial stage of any study of the structure of the fluidized bed as a whole, and of the subsequent development of any model, must involve an investigation of local structural properties, including the above fluctuations.The time variation of the individual particle velocities is due to two different causes. First, there is the interaction between the particles both through direct collisions and through the medium of the liquid phase, and, secondly, there is the interaction with the viscous fluid. These two factors are not independent, so that the set of fluidized particles has certain features characteristic for both a dense gas, with a potential intramolecular interaction, and a set of particles executing Brownian motion in a continuous medium.Any detailed statistical theory of a system of fluidized particles must be based on a representation of the random particle motions in the medium by a stochastic process with some definite properties (see, for example, [3–4]). Ideally, this theory should lead to the formulation of a transport equation which, in view of the above properties of the system, should have some of the features of both the usual Boltzman transport equation and the Fokker-Planck equation. The solution of this final equation is, of course, more difficult than the solution of the Boltzman or Fokker-Planck equations. Moreover, there is also the problem of applying this equation to different special cases. An alternative approach is to develop an approximate, but still sufficiently effective, theory of the local properties of the fluidized bed, which would combine relative simplicity in application with sufficient rigor and generality. This kind of theory is put forward in the present paper. The conclusions to which it leads are in good qualitative agreement with experiment.The author wishes to thank G. I. Barenblatt and the participants of his seminar for useful discussions.  相似文献   

13.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


14.
In the present paper equations are obtained for determining the temperature field in a fluidized layer. The heat and mass transfer processes in a fluidized bed depend significantly on the motion of the solid particles which form the bed. In any small volume of a fluidized bed with nonuniform thermal conditions there are particles with different average temperatures. Therefore it is natural to resort to the statistical representation of such a system, developed previously in [1, 2], for the study of the heat transfer processes. The expression obtained here for the heat conductivity coefficient of the bed is in good qualitative agreement with the experimental data.The author wishes to thank V. G. Levich for his interest and valuable discussions.  相似文献   

15.
This paper reports on the hydrodynamics of a bubble-induced inverse fluidized bed reactor, using a nanobubble tray gas distributor, where solid particles are fluidized only by an upward gas flow. Increasing the gas velocity, the fixed layer of particles initially packed at the top of the liquid starts to move downwards, due to the rise of bubbles in this system, and then gradually expands downwards until fully suspended. The axial local pressure drops and standard deviation were examined to delineate the flow regime comprehensively under different superficial gas velocities. Four flow regimes (fixed bed regime, initial fluidization regime, expanded regime, and post-homogeneous regime) were observed and three transitional gas velocities (the initial fluidization velocity, minimum fluidization velocity, and homogeneous fluidization velocity) were identified to demarcate the flow regime. Three correlations were developed for the three transitional velocities. As the fine bubbles generated from the nanobubble tray gas distributor are well distributed in the entire column, the bed expansion process of the particles is relatively steady.  相似文献   

16.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

17.
A three phase mathematical model of simultaneous heat and mass transfer of a batch operation for a fluidized bed is presented. The three phases are a solid free bubble, emulsion and solid phases. The model employs an elaborate five equations porosity model. Various correlations for the minimum fluidization parameters are surveyed and compared with the adequate one is being adopted in the model. The governing equations together with the boundary and initial conditions are presented for a cyclic operation of the bed. These are numerically solved for a test case where the bed is charged with silica gel particles to dehumidify a process air stream. Thus the bed works in an air dehumidification mode/bed regeneration mode cyclic operation with matching conditions.Results for the bed operation are presented as the temperature and humidity ratio variations for the test case. The results indicate the ability of the developed model to provide the␣required data for the concerned batch operated fluidized bed. Received on 11 May 1998  相似文献   

18.
Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polymer coating” to introduce cohesive force, to gain better understanding of bubbling behavior when particles become cohesive and its effect on chemical processes. The results show that the cohesive force promotes bubble splitting in the tube bank region, thereby causing an increase in the number and a decline in the aspect ratio of the bubbles. As the cohesive force increases within a low level, the bubble number increases and the bubble diameter decreases, while the aspect ratio exhibits different trends at different fluidization gas velocities. The difference in the evolution of bubble size under various cohesive forces mainly takes place in the region without tubes. When the cohesive force is large enough to generate stable agglomerates on the side walls of the bed, the bubble number and the bed expansion sharply decrease. The tubes serve as a framework that promotes the agglomeration, thus accelerating defluidization. Finally, the bubble profile around tubes was studied and found to greatly depend both on the cohesive forces and the location of tubes.  相似文献   

19.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

20.
Hongzhong Li   《Particuology》2010,8(6):631-633
Along with the fast development of computer technology and measurement techniques, fundamental research on fluidization is faced with both new challenges and opportunities. Among others, great attention should be focused on the meso-scale structure of fluidized beds, to study the quantitative prediction theory and optimum control method for the meso-scale structure of fluidized beds, and to establish the modeling of the relationship between meso-scale structure and momentum transfer, heat transfer, mass transfer, and chemical reaction. These efforts, combined with advanced computer simulation, are expected to solve difficult problems in optimum control and scale-up of fluidized bed processes and equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号