首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A rapid method for the determination of chlorinated pesticides and polychlorinated biphenyls in mussels (Mytilus sp.) is reported. The mussel sample is homogenized and extracted with acetonitrile. The organic solution is concentrated and successively diluted with distilled water solution (12 g L−1 NaCl). The organic compounds from water solution are adsorbed onto a NH2 Sep-Pak cartridge. The clean-up step, in which the polychlorobiphenyls and chiorinated pesticides are separated in different eluates, is achieved by passing 25 mL of a 40% methanol aqueous solution through the NH2 Sep-Pak and the C18 Sep-Pak cartridges connected in series. The polychloroblphenyls are desorbed from the NH2 Sep-Pak cartridge whilst the chlorinated peslicides are recovered from the C18 Sep-Pak cartridge. In the separation of polychlorobiphenyls from the chlorinated pesticides tested in this work, only aldrin, hepatachlor and 4,4′-DDD are partially adsorbed with the polychlorobiphenyls onto the NH2 Sep-Pak cartridge. The average recovery is ≥95.0% with a relative standard deviation ≤5.0%. The limits of detection for different pesticides and polychlorobiphenyl congeners are 0.01 and 0.008 μg Kg−1. The final determination is carried out by capillary gas chromatography with ECD.  相似文献   

2.
Summary Gas chromatography of polychlorinated biphenyls and chlorinated pesticides in water samples has been performed after adsorption from a 20–200-mL sample on to a cartridge containing 100 mg diol-bonded porous silica. The PCBs are desorbed with 500 μL ethyl acetate, which is concentrated and analysed by gas chromatography with electron-capture detection (GC-ECD). The average recovery of 0.1 ng mL−1 PCB congeners from distilled water and from Aniene river water is≥95% (standard deviation≤2.8). Average recoveries of 25 ng mL−1 Aroclor 1254 from distilled water and from Aniene river water were, respectively, 94.4% and 92.5% (standard deviation 5.8). In the separation of PCB congeners from the chlorinated pesticides only the aldrin (40%) was eluted with the PCBs from the diol Sep-Pak cartridge by aqueous methanol. The method described is simple and reproducible.  相似文献   

3.
Summary Gas chromatography of polychlorinated biphenyls and chlorinated pesticides in water samples has been performed after adsorption from a 50–250 mL sample on to a cartridge containing 100 mg cyanopropyl-bonded porous silica. The PCBs are desorbed with 500 μL ethyl acetate, which is concentrated and analysed by gas chromatography with electron-capture detection (GC-ECD). The average recovery of 1 ppb PCB congeners at from distilled water and from Marta river water is ≥95% (standard deviation ≤2.5). The average recovery of 20 ppb Aroclor 1260 from Marta river water was ≥91% (standard deviation ≤3.5). In the separation of the PCBs from the chlorinated pesticides only aldrin, heptachlor and 4,4′-DDD are adsorbed with the PCBs by the CN Sep-Pak cartridge. The method proposed is rapid, simple and reproducible.  相似文献   

4.
During this work the determination of uranium in the range of μg·L−1 to tens of μg·L−1 was done by alpha-spectrometry after electroplating the aliquots of water sample using (NH4)2SO4 as an electrolyte. In general, the determination of uranium by alpha-spectrometry needs its separation from other transuranics specially thorium. The process described here does not involve any sample digestion and radiochemical separation of uranium from other transuranics. In this method an aliquot (1 to 3 mL) of the sample was dried and dissolve in (NH4)2SO4 and thereafter the sample was electroplated on a stainless steel (SS) planchet by using an electrochemical cell of special design. The proposed techniques have a distinct advantage over the determination of uranium by adsorptive stripping voltammetry (AdSV) in which uranium-chloranilic (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) acid complex was used for concentrating the uranium from the solution. Since in the case of AdSv, the determination of uranium was not possible for samples having dissolved organic carbon (DOC) more than 15 mg·L−1 and Cl concentration is in the range of 40,000 μ·g−1. In the case of spike experiments with 232U the recovery was observed in the range of 90–95% in aqueous medium having higher concentration of Cl and DOC as indicated above.  相似文献   

5.
Summary On-line solid-phase extraction-gas chromatographyion-trap tandem mass spectrometry (SPE-GC-MS/MS) has been used for the trace-level determination of polar and apolar pesticides. The SPE-GC interface, an Autoloop 2000, was operated at an injection temperature of 90°C which permitted the determination of thermolabile pesticides such as carbofuran and carbaryl. Rectilinear calibration curves were obtained for the analytes tested over a range of 0.1–500 ng L−1, using a sample volume of 10–100 mL for enrichment on an SPE cartridge packed with styrene-divinylbenzene copolymer. The detection limits for the pesticides were in the 0.01–4 ng L−1 range. For a number of pesticides acceptable tandem mass spectra were obtained at levels as low as 0.1 ng L−1 level in real-life water samples. As a demonstration of the applicability of this technique for inorganic anions, bromide and nitrite were converted into 4-bromoacetanilide and 2-phenylphenol, respectively. The reaction products were pooled and subjected to simultaneous analysis by the present method using full-scan mass spectrometric detection. The detection limits were 0.3 and 2 ng L−1, respectively.  相似文献   

6.
Summary Two procedures, based on large-volume injection with a programmed-temperature vaporizer (PTV), have been developed for the determination of several triazine and organophosphorus pesticides. The use of PTV for injection in gas chromatography (GC) has enabled the introduction of up to 200 μL sample extract into the GC, thus increasing the sensitivity of the method. PTV injection has been combined off-line with two different microextraction procedures—liquid-liquid partition and solid-phase extraction. A simple and rapid off-line liquid-liquid microextraction procedure (5 mL water/1 mL methyltert-butyl ether) was applied to surface water samples spiked at levels between 0.01 and 5μg L−1. Recoveries of the overall procedure were >80% and the precision was better than 15%. Detection limits were <30 ngL−1 from 200-μL injections in GC-NPD analysis of triazines and GC-FPD analysis of organophosphorus pesticides. Off-line automated solid-phase extraction with C18 cartridges has been applied to water samples (50 mL) spiked at 0.01, 0.1 and 1 μg L−1. The overall procedure was satisfactory (recoveries >80% and coefficients of variation <12%) and the limits of detection ranged from 1 to 9 ng L−1. Finally, several surface water samples were anlysed, and triazine herbicides were detected at concentrations of approx. 0.1–0.2 μg L−1. The results were similar to those obtained by conventional solvent extraction then GC-MSD after splitless injection of 2 μL.  相似文献   

7.
In this work, the hyphenation of the multisyringe flow injection analysis technique with a 100-cm-long pathlength liquid core waveguide has been accomplished. The Cl/Hg(SCN)2/Fe3+ reaction system for the spectrophotometric determination of chloride (Cl) in waters was used as chemical model. As a result, this classic analytical methodology has been improved, minimizing dramatically the consumption of reagents, in particular, that of the highly biotoxic chemical Hg(SCN)2. The proposed method features a linear dynamic range composed of two steps between (1) 0.2–2 and (2) 2–8 mg Cl L−1, thus extended applicability due to on-line sample dilution (up to 400 mg Cl L−1). It also presents improved limits of detection and quantification of 0.06 and 0.20 mg Cl L−1, respectively. The coefficient of variation and the injection throughput were 1.3% (n = 10, 2 mg Cl L−1) and 21 h−1. Furthermore, a very low consumption of reagents per Cl determination of 0.2 μg Hg(II) and 28 μg Fe3+ has been achieved. The method was successfully applied to the determination of Cl in different types of water samples. Finally, the proposed system is critically compared from a green analytical chemistry point of view against other flow systems for the same purpose.  相似文献   

8.
A simple and fast flow injection fluorescence quenching method for the determination of iron in water has been developed. Fluorimetric determination is based on the measurement of the quenching effect of iron on salicylic acid fluorescence. An emission peak of salicylic acid in aqueous solution occurs at 409 nm with excitation at 299 nm. The carrier solution used was 2 × 10−6 mol L−1 salicylic acid in 0.1 mol L−1 NH4+/NH3 buffer solution at pH 8.5. Linear calibration was obtained for 5–100 μg L−1 iron(III) and the relative standard deviation was 1.25 % (n = 5) for a 20 μL injection volume iron(III). The limit of detection was 0.3 μg L−1 and the sampling rate was 60 h−1. The effect of interferences from various metals and anions commonly present in water was also studied. The method was successfully applied to the determination of low levels of iron in real samples (river, sea, and spring waters).  相似文献   

9.
A rapid and inexpensive method for simultaneous quantification of terbumeton (TER), and its major potential metabolites (TED; terbumeton-desethyl, TOH; terbumeton-2-hydroxy and TID; terbumeton-deisopropyl) in soil bulk water (SBW) samples is proposed. The analytical method involves extraction–concentration from SBW samples using a graphitized carbon black (GCB) cartridge followed by their separation–detection by reversed-phase high-performance liquid chromatography analysis using a C18 column and a diode array detector. A mobile phase of acetonitrile−0.005 mol L−1 phosphate buffer (pH 7.0) (35:65, v/v) at a flow rate of 0.8 mL min−1 in isocratic elution mode has been used. After optimization of the extraction and separation conditions, this method can be used for the simultaneous determination of investigated compounds in the range of the international limits of 0.1 μg L−1. For TER the detection limit was 0.009 μg L−1 and it was 0.100, 0.550, and 0.480 μg L−1 for TED, TOH, and TID, respectively. The recoveries of TER, TED, TOH, and TID from SBW samples, measured at three levels of concentration range, were found to be between 48.0 and 102.0%. The intra-day precision measured by relative standard deviation (RSD) was always lower than 9.0%.  相似文献   

10.
Quantification of chromium in whole blood has been performed by ICP–quadrupole MS. The spectrometer was equipped with a dynamic reaction cell (DRC) with ammonia as reaction gas. The rejection parameter q (RPq) of the DRC and the flow rate of ammonia (NH3) were optimized and set at 0.7 and 0.6 mL min−1, respectively. Blood was diluted 1:51 (v/v) with an aqueous solution containing 0.1 mg L−1 NH4OH, 0.1 g L−1 EDTA, 5 mg L−1 n-butanol, and 0.1‰ Triton X100. Non-spectral matrix effects observed when using the DRC were confirmed by use of vanadium. External calibration with blank and standard solutions prepared in purified water led to biased results for quality control samples. Standard addition calibration was therefore used and its validity verified. By comparing the slopes and calculating residues, it was proved that the plot obtained with standard additions and the plot obtained from blood samples of different concentrations were aligned down to 0.05 μg L−1 after dilution.  相似文献   

11.
P. Popp  A. Paschke 《Chromatographia》1997,46(7-8):419-424
Summary A new 80 μm Carboxen-polydimethylsiloxane (PDMS) fiber for solid phase microextraction (SPME) was tested for the enrichment of volatile organic compounds from water and air. Detection limits between 13 ng L−1 (CH2Cl2) and 0.1 ng L−1 (CHCl2Br and CHClBr2) for the combination: Carboxen-PDMS fiber and GC-ECD and between 35 ng L−1 and 45 ng L−1 (BTEX compounds) for the combination: Carboxen-PDMS and GC-FID using the headspace procedure were determined. Comparisons with the 100 μm PDMS fiber and further coatings show the advantages of the Carboxen-PDMS fiber with respect to extraction efficiency. Disadvantages of the new fiber compared with the 100 μm PDMS fiber are poorer repeatability and prolongation of equilibrium time. Distribution coefficients of the BTEX compounds between aqueous solution and SPME fiber coating were calculated and compared with the results of other researchers and with octanol-water partition coefficients.  相似文献   

12.
A method involving solid-phase extraction (SPE) and reversed-phase liquid chromatography–mass spectrometry (LC–MS) has been developed for determination, in groundwater, of nitrobenzoic acids associated with 2,4,6-trinitrotoluene production. Pre-concentration on a co-polymer-based SPE cartridge enabled quantitative extraction of the analytes from water. Investigation of negative ion electrospray and atmospheric-pressure chemical ionization mass spectrometry indicated the sensitivity of APCI was more than twice that of ESI. An 15N-labeled internal standard was used to achieve more accurate quantitation and mass assignment. Recovery was better than 80% when 10 mL water was extracted with the SPE cartridge. Combination of SPE with LC–MS analysis resulted in method detection limits of less than 5 μg L−1. The method has been used for analysis of groundwater samples collected from a site of a former ammunition plant. Contamination with nitrobenzoic acids was determined at μg L−1 levels.  相似文献   

13.
Summary A new method for the simultaneous identification and quantification of base/neutral and acidic pesticides at a low nanogram per liter concentration level in natural waters is presented. The method includes enrichment of the compounds by solid phase extraction on graphitized carbon black, followed by sequential elution of the base/neutral and acidic pesticides. Identification and quantification of the compounds is performed with HPLC-ESI-MS. This procedure involves passing 1 L of ground water and 2 L of drinking water samples through a 0.5 g graphitized carbon black (GCB) extraction cartridge. A conventional 4.6-mm-i.d. reversed phase LC C-18 operating with a 1 mL min−1 flow of the mobile phase was used to chromatograph the analytes. A flow of 100 μL min−1 of the column effluent was diverted to the ESI source. The ESI source was operated in positive ion mode for base/neutral pesticides and in negative-ion mode for acid pesticides. For the analyte considered, the response of the mass detector was linearly related to the amount of the analytes injected between 5 and 250 ng. In all cases, recoveries of the analytes were better than 90%. The limit of detection (signal-to-noise ratio=3) of the method for the pesticides considered in drinking water samples was estimated to be about 3–10 ng L−1.  相似文献   

14.
This study investigates an off-line solid phase extraction (SPE) for improving the sensitivity in the capillary electrophoretic (CE) analysis of four cephalosporins. Two sorbents—LiChrolut-C18 and Oasis HLB—were used in a SPE process to detect cephalosporins in natural waters (tap, river and hospital sewage) and their performances were compared. By using Oasis HLB sorbent higher recoveries for river water were obtained (94–107% when 500 mL of sample were analyzed). The off-line SPE–CZE method was validated for river water with good detection limits (3 μg L−1) and the linearity ranged between 5 and 200 μg L−1.  相似文献   

15.
A new method has been established for simultaneous determination of 405 pesticide residues in grain, using accelerated solvent extraction (ASE), solid-phase extraction (SPE), and GC-MS and LC-MS-MS. The method was based on appraisal of the GC-MS and LC-MS-MS characteristics of 660 pesticides, their efficiency of extraction from grain, and their purification. Samples of grain (10 g) were mixed with Celite 545 (10 g) and the mixture was placed in a 34-mL cell of an accelerated solvent extractor and extracted with acetonitrile in the static state for 3 min with two cycles at 1,500 psig and at 80°C. For the 362 pesticides determined by GC-MS, half of the extracts were cleaned with an Envi-18 cartridge and then further cleaned with Envi-Carb and Sep-Pak NH2 cartridges in series. The pesticides were eluted with acetonitrile-toluene, 3:1, and the eluates were concentrated and used for analysis after being exchanged with hexane twice. For the 43 pesticides determined by LC-MS-MS the other half of the extracts were cleaned with Sep-Pak Alumina N cartridge and further cleaned with Envi-Carb and Sep-Pak NH2 cartridges. Pesticides were eluted with acetonitrile-toluene, 3:1. After evaporation to dryness the eluates were diluted with acetonitrile-water, 3:2, and used for analysis. In the linear range of each pesticide the linear correlation coefficient r was equal to or greater than 0.956 and 94% of linear correlation coefficients were greater than 0.990. At low, medium, and high fortification levels, at the limit of detection (LOD), twice the LOD and ten times LOD, respectively, recoveries ranged from 42 to 132%; for 382 pesticides, or 94.32%, recovery was from 60 to 120%. The relative standard deviation (RSD) was always below 38% and was below 30% for 391 pesticides, or 96.54%. The LOD was 0.0005–0.3000 mg kg−1. The proposed method is suitable for determination of 405 pesticide residues in grain such as maize, wheat, oat, rice, and barley, etc.   相似文献   

16.
Gas chromatography of dioxins and chlorinated pesticides in water samples has been performed after adsorption from 50 to 100 mL sample on to a cartridge containing 100 mg cyanopropyl-bonded porous silica. The dioxins and chlorinated pesticides were desorbed with 2 mL carbon disulfide, which is concentrated and analysed by gas chromatography coupled with an electron-capture detector. The average recovery of 0.20 ng mL?1 of each chlorinated pesticide and of 0.50 ng mL?1 of each dioxin from distilled water and river water samples (50 mL) is ≥97.2% with a standard deviation (SD) ≤ 2.6. In the dioxin separation from chlorinated pesticides the recovery of dioxins at levels of 0.1–0.5 ng mL?1 is ≥97.9% with a SD ≤ 1.3, with traces of aldrin, heptachlorepoxide and 4,4′-DDD (≤1.7%) by the CN-Sep-Pak cartridge, while the recovery of chlorinated pesticides at levels of 0.05–0.2 ng mL?1 is ≥97.4% with a SD ≤ 1.5, with traces of hep-dioxin (2.4%) and penta-dioxin (1.0%) by the C18-Sep-Pak cartridge connected “in series” to the CN-Sep-Pak cartridge.  相似文献   

17.
Titanium oxide nanotube electrodes were successfully prepared by anodic oxidation on pure Ti sheets in 0.5 wt.% NH4F + 1 wt.% (NH4)2SO4 + 90 wt.% glycerol mixed solutions. Nanotubes with diameter 40–60 nm and length 7.4 μm were observed by field emission scanning electron microscope. The electrochemical and photoelectrochemical characteristics of TiO2 nanotube electrode were investigated using linear polarization and electrochemical impedance spectroscopy techniques. The open-circuit potential dropped markedly under irradiation and with the increase of Cl concentrations. A saturated photocurrent of approximately 1.3 mA cm−2 was observed under 10-W low-mercury lamp irradiation in 0.1 M NaCl solution, which was much higher than film electrode. Meanwhile, the highest photocurrent in NaCl solution implied that the photogenerated holes preferred to combine with Cl. Thus, a significant synergetic effect on active chlorine production was observed in photoelectrocatalytic processes. Furthermore, the generation efficiency for active chlorine was about two times that using TiO2/Ti film electrode by sol–gel method. Finally, the effects of initial pH and Cl concentration were also discussed.  相似文献   

18.
Among the “traditional” hydride-forming elements, lead is probably the most difficult, and its determination in this form has rarely been reported in the literature. In this paper a simple and rapid method, axial-view inductively-coupled plasma optical-emission spectrometry using on-line hydride generation (HG–ICP–OES) from samples prepared as slurry, is proposed for determination of lead in environmental samples. The samples (20–50 mg, particle size ≤120 μm) were treated with 1 mL aqua regia in a 40-kHz ultrasonic bath for 60 min. The slurry was diluted to a final volume of 50 mL with a 10% m/v solution of (NH4)2S2O8. The concentrations of NaBH4, tartaric acid, and (NH4)2S2O8, used for on-line plumbane generation were optimized by means of a complete factorial analysis applied to an aqueous standard solution and to the slurry of a sediment certified reference material (CRM). External calibration against aqueous standards in the concentration range 10–100 μg L−1 was used for analysis of six CRM—three marine sediments, one river sediment, and two sewage sludges. Analysis of the filtered slurry showed that Pb was only partially extracted into the liquid phase. Several major concomitants tested did not affect the Pb signal. The detection limit (3s, n = 10) for 20 mg sample in a final volume of 50 mL was 5.0 μg g−1. Tin was the only other hydride-forming analyte that could be determined satisfactorily with Pb; for tin the detection limit was 1.0 μg g−1. The values obtained for Pb and Sn were not significantly different from the certified concentrations, according to the t-test at the 95% confidence level. Nine river sediments collected locally were also analyzed and the concentrations were in agreement with results obtained after total digestion.  相似文献   

19.
Liquid chromatography with electrospray mass spectrometry (LC–ESI-MS) instrumentation equipped with a single quadrupole mass filter has been used to determine several benzoylphenylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron). Chromatographic and MS parameters were optimised to obtain the best sensitivity and selectivity for all pesticides. Solid-phase extraction (SPE) using C18 cartridges was applied for preconcentration of pesticide trace levels in river water samples. Recoveries of benzoylphenylurea pesticides from spiked river water (0.01 and 0.025 μg L−1) were between 73 and 110% and detection limits were between 3.5 and 7.5 ng L−1. The applicability of the method to the determination of benzoylphenylurea insecticides in spiked cucumber, green beans, tomatoes and aubergines was evaluated. Samples were extracted into dichloromethane without any clean-up step. The limits of detection ranged from 1.0 to 3.2 ng mL−1 (0.68 and 2.13 μg kg−1 in the vegetable samples). Mean recoveries ranged from 79 to 114% at spiking levels of 0.01 and 0.03 mg kg−1. The method was applied to determine traces of benzoylphenylureas in both river water and vegetable samples with precision values lower than 10%. Interferences due to the matrix effect were overcome using matrix-matched standards.  相似文献   

20.
The structures of two salts [Co(NH3)6][Rh(NO2)6] (I) and [Co(NH3)6][(NO2)3Rh(μ-NO2)1+x (μ-OH)2−x Rh(NO2)3]·(2−x)(H2O), x = 0.17 (II) are solved. Single crystals of the salts are obtained by the counter diffusion method through the gel of aqueous solutions of [Co(NH3)6]Cl3 and Na3[Rh(NO2)6]. The structure of [Co(NH3)6][Rh(NO2)6] is consistent with the diffraction data for a polycrystalline sample of poorly soluble fine salt formed in the exchange reaction between aqueous solutions of [Co(NH3)6]Cl3 and Na3[Rh(NO2)6]. The structure of [Co(NH3)6][(NO2)3Rh(μ-NO2)1+x (μ-OH)2−x Rh(NO2)3]·(2−x)(H2O), x = 0.17 exhibits the stabilizing effect of a large cation in the formation of novel, unknown previously coordination ions: [(NO2)3Rh(μ-NO2)(μ-OH)2Rh(NO2)3]3− and [(NO2)3Rh(μ-NO2)2(μ-OH)Rh(NO2)3]3−.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号