首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
乔从德 《高分子科学》2013,31(9):1321-1328
The melting and crystallization behaviors of poly(ε-caprolactone) (PCL) ultra-thin films with thickness from 15 nm to 8 nm were studied by AFM technique equipped with a hot-stage in real-time. It was found that melting can erase the spherulitic structure for polymer film with high thickness. However, annealing above the melting point can not completely erase the tree-like structure for the thinner polymer film. Generally, the structure formation of thin polymer films of PCL is controlled not only by melting and crystallization but also by dewetting during thermal annealing procedures, and dewetting predominates in the structure formation of ultra-thin films. However, the presence of tree-like morphology at 75 °C may be due to the strong interaction between PCL and mica surface, which may stick the PCL chains onto the mica surface during thermal annealing process. Moreover, the growth of the dendrites was investigated and it was found that crystallization is followed from a dewetted sample, and the branches did not grow with the stems. The crystallization of polymer in the ultra-thin films is a diffusion-controlled process. Both melting and crystallization behaviors of PCL in thin films are influenced by film thickness.  相似文献   

2.
Isocyanate-treated graphite oxides(i GOs) were well-dispersed into the polystyrene(PS) thin films and formed a novel network structure. With control in fabrication, an i GOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by i GOs. This work demonstrated that the i GOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures(Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C above Tg, surface morphology evolution of the films was monitored by atomic force microscopy(AFM). The i GOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.  相似文献   

3.
We have investigated the influence of the adsorption process on the dewetting behavior of the linear polystyrene film(LPS),the 3-arm star polystyrene film(3 SPS) and the ring polystyrene film(RPS) on the silanized Si substrate.Results show that the adsorption process greatly influences the dewetting behavior of the thin polymer films.On the silanized Si substrate,the 3 SPS chains exhibit stronger adsorption compared with the LPS chains and RPS chains; as a result,the wetting layer forms more easily.For LPS films,with the decrease of annealing temperature,the kinetics of polymer film changes from exponential behavior to slip dewetting.As a comparison,the stability of 3 SPS and RPS films switches from slip dewetting to unusual dewetting kinetic behavior.The adsorbed nanodroplets on the solid substrate play an important role in the dewetting kinetics by reducing the driving force of dewetting and increase the resistant force of dewetting.Additionally,Brownian dynamics(BD) simulation shows that the absolute values of adsorption energy(ε) gradually increase from linear polymer(-0.3896) to ring polymer(-0.4033) and to star polymer(-0.4264),which is consistent with the results of our adsorption experiments.  相似文献   

4.
O.K.C.Tsui 《高分子科学》2003,21(2):123-127
It has been a long-standing question whether dewetting of polymer film from non-wettable substrate surfaceswherein the bicontinuous morphology never forms in the dewetting film is due to spinodal instability or heterogeneousnucleation. In this experiment, we use a simple method to make the distinction through introduction of topographical defectsof the films by rubbing the sample surface with a rayon cloth. Spinodal dewetting is identified for those films that dewet by acharateristic wavevector, q, independent of the density of rubbing-induced defects. Heterogeneous nucleation, on the otherhand, is identified for those with q increasing with increasing density of defects. Our result shows that PS films on oxidecoated silicon with thickness less than ≈ 13 nm are dominated by spinodal dewetting, but the thicker films are dominated bynucleation dewetting. We also confirm that spinodal dewetting does not necessarily lead to a bicontinuous morphology in thedewetting film, contrary to the classic theory of Cahn.  相似文献   

5.
Based on the methods reported by Ambler and Kraus, a method has been developed for the determination of long-chain branching distribution in polymers by the combined use of GPC and intrinsic viscosity data of polymer fractions. In this method, g_i, λ_i, G_i, m_i, the weight percentage of polymer that is branched, etc. can be used simultaneously to characterize the distribution, degree and content of branching in polymers. Some relations between molecular weight polydispersity and branching polydispersity in Nickel-based high cis-1,4-polybutadiene samples are discussed. It was found that the number of long branches λ. per unit molecular weight is a function of molecular weight and all of the samples are highly branched at a molecular weight of about 10~6.  相似文献   

6.
闫寿科 《高分子科学》2016,34(4):513-522
Oriented thin films of P3HT were obtained by a friction-transfer technique. The morphology and structure of the film were studied by means of optical microscopy, atomic force microscopy and transmission electron microscopy. Optical microscopy observation indicates that large size well-ordered P3HT thin films can be produced by a friction-transfer technique. Highly ordered lamellae were observed in P3HT friction-transferred films by electron microscopy. Electron diffraction results confirm the existence of high orientation with the a- and c-axes of P3HT crystals aligned in the film plane while the c-axis parallel to the friction-transfer direction. The atomic force microscopy observation of the as-prepared P3HT thin film shows, however, a featureless top surface morphology, indicating the structure inhomogeneity of the obtained film. To get highly oriented P3HT thin films with homogenous structure, high temperature annealing, solvent vapor annealing and self-seeding recrystallization of the friction-transferred film were performed. It is confirmed that solvent vapor annealing and self-seeding recrystallization methods are efficient in improving the surface morphology and structure of the frictiontransferred P3HT thin film. Highly oriented P3HT films with unique structure can be obtained through friction-transfer with subsequent solvent vapor annealing and self-seeding recrystallization.  相似文献   

7.
Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD measurement and SEM observation show that liquid-induced crystallization of PET matrix has occurred during the preparation of composite films. Depending upon the equilibrium degree of swelling and crystallinity, the limited depth of penetration of pyrrole molecules results in a skin-core structure of the composite film. The skin layer containing charge transfer intercalated polypyrrole has a surface resistance of 3.5×10~4 Ω. Rigid and heat-resistant polypyrrole molecules formed in PET film increase the tensile modulus and, especially, the rigidity of PET at elevated temperatures. However, they decrease the tensile strength and elongation at break, and impair the thermal ductility of PET.  相似文献   

8.
The structural and morphological evolution of mono-domains in thin films has been investigated for a series ofliquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4'-biphenylyl)-2 -(4-hydroxyl-phenyl)propane (TPP) with 1, 7-dibromoheptane and 1, 11-undecane at different compositions(coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneousmolecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films wereannealed in the high-temperature columnar phase (Φ′). Similar to the nucleation process in polymer crystallization,transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, wheremolecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation graduallybecame tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achievedafter a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing timeand grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packingproved by the electron diffraction experiments.  相似文献   

9.
A new method is proposed for estimation of weight-average molecular weight from the intrinsicviscosity and GPC chromatogram of a polymer sample for which Mark-Houwink coefficients are notknown. The method bases on an approximate relationship between GPC data and the intrinsicviscosity of the sample. Reliability of this method was tested by comparing with the universalcalibration method which requires known Mark-Houwink coefficients for seven samples havingdifferent molecular weight distributions. Results obtained by the new method are in excellent agree-ment with those by the universal calibration method.  相似文献   

10.
The formation of polymer and hydrogel from aqueous solutions having 20, 30 and 40% concentrations ofacrylamide monomer by γ-ray irradiation processing in the dose range 0.06-30 kGy using a Co-60 source and theircharacterization have been observed. Polymer conversion and gel fraction are found to depend on radiation doses. Polymerconversion increases with the increase of dose, depending on the solution concentration, where maximum conversion isachieved at 0.18, 0.16 and 0.10 kGy for 20%, 30% and 40% concentrations, respectively. On the other hand, gel fractionincreases with dose from the gel point (0.12 kGy) for all concentrations, where 100% conversion of gel occurs at doses≥5 kGy. Tensile strength, viscosity and molecular weight (M_w) of polymer samples increase with both the dose and theconcentration, showing a high value of M_w up to≈10~8. Swelling of hydrogels under water with respect to time varies due tothe variation of cross-linking density formed in the gels and the maximum swelling mainly occurs within 24 h. A remarkable change of surface morphology reveals characteristic features of monomer, polymer and hydrogel films.  相似文献   

11.
The control of dewetting for thin polymer films is a technical challenge and of significant academic interest. We have used polystyrene nanoparticles to inhibit dewetting of high molecular weight, linear polystyrene, demonstrating that molecular architecture has a unique effect on surface properties. Neutron reflectivity measurements were used to demonstrate that the nanoparticles were uniformly distributed in the thin (ca. 40 nm) film prior to high temperature annealing, yet after annealing, they were found to separate to the solid substrate, a silanized silicon wafer. Dewetting was eliminated when the nanoparticles separated to form a monolayer or above while below this surface coverage the dewetting dynamics was severely retarded. Blending linear polystyrene of similar molecular weight to the polystyrene nanoparticle with the high molecular weight polystyrene did not eliminate dewetting.  相似文献   

12.
We have studied the dewetting process of thin polystyrene films on nonwettable substrates in the viscoelastic regime slightly above the glass transition temperature. The evolution of the shape of the dewetting rim for varying film thickness, molecular weights and dewetting temperatures allowed us to determine the relaxation rates of residual stresses, which originated from nonequilibrated polymer chain conformations formed during film preparation by spin‐coating. For long chain polymers, we found rates notably faster than the longest bulk relaxation processes, highly independent of molecular weight and temperature. Our study demonstrates that dewetting is a powerful tool for sensitive characterization of nonequilibrium properties of thin polymer films. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 515–523  相似文献   

13.
Thin polymeric films are increasingly being utilized in diverse technological applications, and it is crucial to have a reliable method to characterize the stability of these films against dewetting. The parameter space that influences the dewetting of thin polymer films is wide (molecular mass, temperature, film thickness, substrate interaction) and a combinatorial method of investigation is suitable. We thus construct a combinatorial library of observations for polystyrene (PS) films cast on substrates having orthogonal temperature and surface energy gradients and perform a series of measurements for a range of molecular masses (1800 g/mol < M < 35 000 g/mol) and film thicknesses h (30 nm < h < 40 nm) to explore these primary parameter axes. We were able to obtain a near-universal scaling curve describing a wetting-dewetting transition line for polystyrene films of fixed thickness by introducing reduced temperature and surface energy variables dependent on M. Our observations also indicate that the apparent polymer surface tension gamma(p) becomes appreciably modified in thin polymer films from its bulk counterpart for films thinner than about 100-200 nm, so that bulk gamma(p) measurements cannot be used to estimate the stability of ultrathin films. Both of these observations are potentially fundamental for the control of thin film stability in applications where film dewetting can compromise film function.  相似文献   

14.
Coarse-grained molecular dynamics simulations were carried out to investigate the dewetting behavior of a polymer thin film on partial wetting solid surface at the early stage of the dewetting process. Spontaneous dewetting is initiated by removing a band of strip from both the ends of the liquid polymer film which has achieved equilibrium. The solid-liquid interaction and temperature were varied to show their influence on the dewetting dynamics during dewetting as well as the shape evolution of the liquid ...  相似文献   

15.
The thermodynamic stability of thin films of the perfluoropolyether (PFPE) Z-Tetraol, as a function of molecular weight, on amorphous nitrogenated carbon, CNx, is investigated. An optical surface analyzer is used to image the autophobic dewetting of the Z-Tetraol films. Film dewetting results when the PFPE film thickness applied to the CNx surface exceeds a critical value. This critical dewetting thickness is identified as the monolayer thickness of the adsorbed PFPE film via measurements of the changes in the surface energy as a function of lubricant film thickness. The observed dewetting coincides with the film thickness at which the disjoining pressure goes to zero. The critical dewetting thickness is dependent on the PFPE molecular weight.  相似文献   

16.
We investigated the dewetting of metastable poly(N-vinylpyrrolidone) (PNVP) thin films (45 nm) on top of polystyrene (PS) thin films (58 nm) as a function of annealing temperature and molecular weight of PS (96 and 6850 kg/mol). We focused on the competition between dewetting, occurring as a result of unfavorable intermolecular interactions at the PNVP/PS interface, and spontaneous cross-linking of PNVP, occurring during thermal annealing, as we recently reported (Telford, A. M.; James, M.; Meagher, L.; Neto, C. ACS Appl. Mater. Interfaces 2010, 2, 2399-2408). Using optical microscopy, we studied how the dewetting morphology and dynamics at different temperatures depended on the relative viscosity of the top PNVP film, which increased with cross-linking time, and of the bottom PS film. In the PNVP/PS96K system, cross-linking dominated over dewetting at temperatures below 180 °C, reducing drastically nucleated hole density and their maximum size, while above 180 °C the two processes reversed, with complete dewetting occurring at 200 °C. On the other hand, the PNVP/PS6850K system never achieved advanced dewetting stages as the dewetting was slower than cross-linking in the investigated temperature range. In both systems, dewetting of the PNVP films could be avoided altogether by thermally annealing the bilayers at temperatures where cross-linking dominated. The cross-linking was characterized quantitatively using neutron reflectometry, which indicated shrinkage and densification of the PNVP film, and qualitatively through selective removal of the bottom PS film. A simple model accounting for progressive cross-linking during the dewetting process predicted well the observed hole growth profiles and produced estimates of the PNVP cross-linking rate coefficients and of the activation energy of the process, in good agreement with literature values for similar systems.  相似文献   

17.
聚合物熔体膜在基体表面上的润湿和铺展行为受铺展系数和Hamaker常数影响。对于不能在基体表面上铺展的聚合物膜,当处于其玻璃化温度以上时,聚合物熔体膜将破裂,出现非连续区域。随着体系处于聚合物玻璃化温度以上时间的延长,非连续部分尺寸不断增长,增长速率与表面张力、聚合物粘度、聚合物液滴在基体表面的平衡接触角等因素有关,平衡后聚合物以液滴的形式在基体表面稳定存在。将带功能端基聚合物加入不能在基体表面上铺展的聚合物中,通过修饰聚合物与基体界面或改变聚合物熔体膜的表面张力,可以使原来不能在基体表面铺展的聚合物保持稳定。本文综述了聚合物熔体膜的铺展和润湿动力学研究进展,并归纳了使聚合物熔体膜稳定的方法。  相似文献   

18.
The wetting/dewetting behavior of thin films of lightly sulfonated low molecular weight polystyrene (SPS) ionomers spin-coated onto silica surfaces were studied using atomic force microscopy (AFM), contact angle measurements, and electron microscopy. The effects of the sulfonation level, the choice of the cation, the solvent used to spin-coat the films, and the molecular weight of the ionomer were investigated. Small angle X-ray scattering was used to determine the bulk microstructure of the films. The addition of the sulfonate groups suppressed the dewetting behavior of the PS above its glass transition temperature, e.g. no dewetting occurred even after 240 h of annealing at 120 degrees C. Increasing the sulfonation level led to more homogeneous and smoother surfaces. The choice of the cation used affected the wetting properties, but not in a predictable manner. When tetrahydrofuran (THF) or a THF/methanol mixed solvent was used for spin-casting, a submicron-textured surface morphology was produced, which may be a consequence of spinodal decomposition of the film surface during casting. Upon annealing for long times, the particles coalesced into a coherent, nonwetted film.  相似文献   

19.
The dewetting behavior of thin polystyrene (PS) film has been investigated by placing an upper plate with a ca. 140 nm gap from the underlying substrate with the spin-coated thin polymer films. Three different kinds of dewetting behaviors of thin PS film have been observed after annealing according to the relative position of the PS film to the upper plate. Since the upper plate is smaller than the underlying substrate, a part of the polymer film is not covered by the plate. In this region (I), thin PS film dewetting occurs in a conventional manner, as previously reported. While in the region covered by the upper plate (III), the PS film exhibits unusual dewetted patterns. Meanwhile, in the area right under the edge of the plate (II) (i.e., the area between region I and region III), highly ordered arrays of PS droplets are formed. Formation mechanisms of different dewetted patterns are discussed in detail. This study may offer an effective way to improve the understanding of various dewetting behaviors and facilitate the ongoing exploration of utilizing dewetting as a patterning technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号