首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silver and silver iodide nanocrystals have been synthesized in the water-in-CO(2) reverse microemulsions formed by the commonly used surfactant, sodium bis(2-ethylhexyl)sulfosuccinate (AOT), in the presence of 2,2,3,3,4,4,5,5-octafluoro-1-pentanol as cosurfactant. The nanometer-sized aqueous domains in the microemulsion cores not only act as nanoreactors, but the surfactant interfacial monolayer also helps the stabilization of the metal and semiconductor nanoparticles. The transmission electron microscopy results show that silver and silver iodide nanocrystals with average diameters of 6.0 nm (standard deviation, SD=1.3 nm) and 5.7 nm (SD=1.4 nm), respectively, were formed. The results indicate that the method can be utilized as a general and economically viable approach for the synthesis of metal and semiconductor quantum dots in environmentally benign supercritical carbon dioxide.  相似文献   

2.
The effect of AOT (sodium-bis(2-ethylhexyl sulfosuccinate)) on enzymatic activity of the organic solvent resistant tyrosinase (OSRT) in aqueous phosphate buffer solutions and in water-in-oil microemulsions of the water/AOT/isooctane system has been investigated. In contrast to mushroom tyrosinase, AOT does not activate OSRT in aqueous solutions, altering its activity very little at concentrations lower than 2 mM. Increasing contents of AOT in isooctane reduce the observed initial reaction rates of oxidation of t-butylcatechol (tBC) and 4-methylcatechol (4-MC). Similarly to mushroom tyrosinase, the effect has been described using an equation based on preferential binding of the substrates by surfactant interface layers. The apparent Michaelis-Menten substrate binding constants increase linearly with AOT concentration (with slopes of 0.12+/-0.02 and 0.051+/-0.006 for tBC and 4-MC, respectively), and the effective enzyme turnover number in the microemulsions remains practically constant.  相似文献   

3.
Zeolite nanocrystals were prepared from three-dimensionally ordered mesoporous-imprinted (3DOm-i) silicalite-1 by a fragmentation method involving sonication and dissolution within a certain pH range. 3DOm-i silicalite-1 with spherical elements with diameters ranging from 10 to 40 nm and a wide range of crystal sizes (100-200 nm, 500-600 nm, and 1-2 μm) was used as the starting material. The highest yield (57%) of isolated nanocrystals was obtained for 3DOm-i silicalite-1 with a crystal size of 100-200 nm and a spherical element diameter of 40 nm. The smallest nanocrystals obtained, albeit in very low yields, had a 10 nm diameter. Preparation of stable silicalite-1 nanocrystal suspensions fragmented from 20 and 40 nm 3DOm-i silicalite-1 was demonstrated. Cryogenic transmission electron microscopy showed that the isolated zeolite nanocrystals can be used as seeds for the epitaxial growth of silicalite-1. An application of these findings was demonstrated: silicalite-1 nanocrystal suspensions were used to deposit seed layers on porous α-alumina disks, which were converted to continuous thin (300-400 nm) films by secondary growth that exhibited both high permeances and separation factors (3.5 × 10(-7) mol m(-2) s(-1) Pa(-1) and 94-120, respectively, at 150 °C) for p- and o-xylene.  相似文献   

4.
The crystal morphology of silicalite-1 was adjusted through a microemulsion-based hydrothermal synthesis. The surfactant cetyltrimethylammonium bromide (CTAB) with cosurfactant butanol was used to form water-in-oil microemulsions containing the silicalite-1 synthesis gel. The crystal morphology of silicalite-1 was adjusted from coffin-shaped to novel rod-shaped and to irregular-shaped nanoparticles by varying the microemulsion composition. Silicalite-1 synthesized in the microemulsion has a smaller size and a more narrow size distribution than that produced by conventional synthesis without the microemulsion. The novel morphology of silicalite-1 may facilitate assembly into films and find applications in separation and catalysis.  相似文献   

5.
Small-angle X-ray scattering (SAXS) has been used to quantify how perturbations of the tetrapropylammonium (TPA) cation structure affect the growth of silicalite-1 from clear solutions at 368 K. Alkyltripropylammonium (RN(C3H7)3 +OH-, R = Me, Et, Bu, and Pe), dialkyldipropylammonium (R2N(C3H7)2 +OH-, R = Et and Bu), and bis-1,6-(tripropylammonium)hexamethylene dihydroxide (TPA-dimer) cations are used as structure-directing agents (SDAs) to synthesize silicalite-1 from clear solution mixtures comparable to those that have been previously investigated for the TPAOH mediated synthesis (i.e., 1 TEOS:0.36 TPAOH:20 H2O, 368 K). All mixtures studied except those employing dialkyldipropylammonium cations lead to the formation of silicalite-1. The in-situ SAXS investigations show that TPA cations lead to the shortest reaction time as indicated by the observance of Bragg diffraction peaks (15 approximately 16.5 h) and the largest particle growth rate (1.9 +/- 0.1 nm/h). Substituting a propyl group of the TPA moiety with a different alkyl group significantly affects silicalite-1 nucleation and growth with the trend Bu > Et > Pe > Me. Synthesis mixtures containing the TPA-dimer also show a slower growth rate. All the solutions show a bimodal particle distribution throughout zeolite growth with the primary particle size being approximately 5 nm in all cases, independent of the SDA identity. Syntheses using diethyldipropylammonium hydroxide, dibutyldipropylammonium hydroxide, and 4,4'-trimethylenebis(1-methyl-1-hexyl-piperidinium) dihydroxide as the SDA do not result in silicalite-1 formation, showing that the nucleation of silicalite-1 from clear solution at 368 K is sensitive to the SDA geometry.  相似文献   

6.
The ability of water-soluble, globular proteins to tune surfactant/oil/water self-assemblies has potential for the formation of biocompatible microemulsions and also plays a role in protein function at biological interfaces. In this work, we examined the effect of the protein alpha-lactalbumin on Aerosol-OT (AOT) phase structures in equivolume mixtures of oil and 0.1 M brine. In this pseudo-ternary system, surfactants are free to move to either oil or water phase to adopt phase structures close to the spontaneous curvature of the surfactants. Using small-angle X-ray scattering, we observed that addition of this protein changed the spontaneous curvature of the surfactant monolayer substantially. In the absence of protein, AOT adopted a negative spontaneous curvature to form spherical w/o microemulsion droplets. When less than 1 wt % of alpha-lactalbumin was added into the system, the w/o droplets became nonspherical and larger in volume, corresponding to an increase in water uptake into the droplets. As the protein-to-surfactant ratio increased, protein, surfactant, and oil increasingly partitioned toward the aqueous phase. There the protein triggered the formation of o/w microemulsions with a positive spontaneous curvature. These protein-containing structures exhibited significant interparticle attraction. We also compared the influence of two oil types, isooctane and cyclohexane, on the protein/surfactant interactions. We propose that the more negative natural curvature of the AOT/cyclohexane monolayer in the absence of protein prevented protein incorporation within organic phase structures and consequently pushed the system self-assembly toward aqueous aggregate formation.  相似文献   

7.
For the application of zeolites as heterogeneous catalysts, low diffusion resistance for hydrocarbons within the micropore is essential for improving product selectivity and catalyst lifetime. This problem has been overcome by reducing the crystal size. This review introduces size-controlled preparation of nano-sized zeolites via hydrothermal synthesis in water/surfactant/organic solvent (emulsion method) and their application to heterogeneous catalysts. The ionicity of the hydrophilic group in surfactant molecules and the concentration of the Si source affected the crystallinity and morphology of zeolites prepared using the emulsion method. When using a non-ionic surfactant, mono-dispersed silicalite-1 nanocrystals ~60?nm in diameter were successfully prepared. Nano- and macro-ZSM-5 zeolites with crystal sizes of ~150?C200?nm and 1.5???m, respectively, were prepared and applied to n-hexane cracking and acetone-to-olefin reactions to investigate the effect of zeolite crystal size on catalytic stability and light olefin yield. Application of nano-zeolite to light olefin production was effective in achieving faster mass transfer of hydrocarbon molecules within the micropore, which led to improvements in olefin yields and catalyst lifetime.  相似文献   

8.
采用气相色谱内标法研究了苯酚在AOT/异辛烷/水、CTAB/正癸醇/异辛烷/水、DBSA/异辛烷/水3种反相微乳液中进行硝化反应的选择性;考察了表面活性剂种类、反应时间、反应温度以及反相微乳液的含水量等因素对反应选择性的影响.研究结果表明,苯酚在微乳液体系中的硝化反应具有明显的邻位选择性,阴离子表面活性剂DB-SA体系的邻位选择性最高,这与它同时具有微乳催化和酸催化作用有关.  相似文献   

9.
The kinetics of the alkaline hydrolysis of sodium bis(2-ethylhexyl)sulfosuccinate (AOT) in water/AOT/isooctane microemulsions has been studied by monitoring the absorbance change of the phenolphthalein in the system with time. The apparent first-order rate constant k(obs) has been obtained and found to be dependent on both the molar ratio of water to AOT ω and the temperature. The dependences of k(obs) on ω have been analyzed by a pseudophase model which gives the true rate constants k(i) of the AOT-hydrolysis reaction on the interface and the partition coefficients K(wi) for the distribution of OH(-) between aqueous and interface pseudophases at various temperatures; the latter is almost independent of the temperature and ω. The temperature dependences of the reaction rate constants k(obs) and k(i) have been analyzed to obtain enthalpy ΔH(≠), entropy ΔS(≠), and energy E(a) of activation, which indicate that the distribution of OH(-) between aqueous and interface pseudophases increases ΔS(≠) but makes no contribution to E(a) and ΔH(≠). The influence of the overall concentration of AOT in the system on the rate constant has been examined and found to be negligible. It contradicts with what was reported by García-Río et al. (1) but confirms that the first-order reaction of the AOT-hydrolysis takes place on the surfactant interface. The study of the influence of AOT-hydrolysis on the kinetics of the alkaline fading of crystal violet or phenolphthalein in the water/AOT/isooctane microemulsions suggests that corrections for the AOT-hydrolysis in these reactions are required.  相似文献   

10.
We studied the 1,3-dipolar cycloaddition of benzonitrile oxide to N-ethylmaleimide in AOT/isooctane/water microemulsions at 25.0 degrees C and found the reaction rate to be roughly 150 and 35 times greater than that in isooctane and pure water, respectively. The accelerating effect of the microemulsion is the combined result of an increase in the local concentrations of the reactants through incorporation into the interface and of the intrinsic rate of the process through electrostatic interactions with the headgroups in the surfactant.  相似文献   

11.
The use of aqueous catanionic surfactant mixtures in the oil-in-water (o/w) microemulsion polymerisation of styrene is reported. Catanionic surfactant mixtures of dodecyltrimethylammonium bromide 1 and sodium dodecylsulfate 3, or decanediyl-1,10-bis(dimethyldodecylammonium bromide) 2, a gemini surfactant, and the anionic surfactant 3 were used. Phase behaviour and polymerisation properties of the microemulsions were studied as a function of the total surfactant concentration and the cationic/anionic surfactant ratio. Single-phase o/w microemulsions were only formed if either the cationic or anionic surfactant were present in large excess. Upon -irradiation, polymer nanoparticles were obtained. Using dynamic light scattering, the particle radii were determined to be 10 to 20 nm, the size depending on the total surfactant concentration, the cationic/anionic surfactant ratio and the surfactant/styrene ratio. Size exclusion chromatography indicated molecular weights of polystyrene of between 3×105 and 1.4×106 Daltons. Catanionic 1/3 and 2/3 mixtures differ in their styrene solubilizations. In a 1- or 3-rich system, the solubilization efficiency can be improved by increasing the concentration of the oppositely charged minor surfactant component, while in a 2-rich system the addition of 3 only diminishes the efficiency. Possible reasons for the different behaviours are discussed.  相似文献   

12.
In this study, we present a synthetic pathway for the fabrication of self-supporting zeolite monoliths consisting of crystallized nanoparticles. A resorcinol-formaldehyde-based organic aerogel is used as a template, and silicalite-1 is used as the zeolite example. The silicalite-1 monoliths obtained consist of individual well-defined zeolite nanocrystals with sizes of 30-40 nm. The monoliths exhibit a high mechanical stability and have hierarchical porosity, with micropores within the zeolite particles, a mesopore system formed by the packing of the nanoparticles, and a macropore system on the monolith level. Such monolithic zeolites show high selectivity typically above 80% to epsilon-caprolactam combined with a high rate of reaction of 0.46 g(caprolactame)/(g(catalyst).h) in the Beckmann rearrangement of cyclohexanone oxime.  相似文献   

13.
The relationship between the properties of surfactant monolayers at oil-water interfaces and the phase behaviour in bulk of mixtures of oil + water + surfactant is discussed. Such monolayer properties include the spontaneous curvature, co the interfacial tension, I γ, the elasticity K (or rigidity) associated with the mean curvature, and the elasticity K associated with the Gaussian curvature. The model system chosen for investigation is the anionic surfactant AOT + aqueous NaCl + n-alkane at 20°C. In such systems, inversion of microemulsion type from oil-in-water (o/w) to water-in-oil (w/o) is possible with increasing electrolyte concentration. The tension, γ, passes through an ultralow minimum value at conditions corresponding to the formation of three phases. Using small angle neutron scattering, we have determined the structure of surfactant-rich third phases (co ~ 0) formed with the different alkanes. Lamellar phases consisting of surfactant monolayers separated alternately by oil and water appear with short alkanes, whereas L3 and bicontinuous phases form in systems containing longer alkanes. The bending elasticity K has been measured for planar monolayers at the oil-water interface by ellipsometry. K is independent of salt concentration but depends markedly on alkane chain length N, falling from ~ 1 kBT for N < 11 to ~0.1 kBT for N = 14. This is discussed in terms of the differing extents of oil penetration into the surfactant chains. Higher rigidities favouring lamellar phases and lower rigidities favouring bicontinuous microemulsions are in line with the theoretical predictions of de Gennes and Taupin. Estimates of the constant K have been obtained in droplet microemulsions (w/o) from a knowledge of their size, K and γ. The sign of the constant is in agreement with the geometry of the phases formed in three phase systems. Finally, the ideas and concepts developed in the oil-water systems described above are used to explain the wetting behaviour by alkanes of AOT monolayers at the air-water surface.  相似文献   

14.
The colloidal dispersion containing the nanosized zeolites with the MFI topology has been successfully prepared. A pre-aging process of the mother gel at 80°C for 24 h before the crystallization was important for the formation of the nanosized zeolites. We have also found that silicalite-1 nanocrystals av. 62 nm in size were formed by the addition of acidic amino acids into the mother gel. The particle size of the zeolites can be controlled ranging from 62 to 530 nm by changing the amount of water, aging process, crystallization time and temperature and the addition of organic molecules. Furthermore, nanosized titanium silicalite-1 (TS-1) with the size of 50-130 nm has been successfully synthesized by the addition of a Ti source into the synthesis gel of the silicalite-1 nanocrystals. The nanosized TS-1 exhibits a higher catalytic activity in the epoxidation of cyclohexene than the microsized ones. Finally, we demonstrate the preparation of thin films of the silicalite-1 and TS-1 nanocrystals onto a silicon substrate by a dip-coating technique.  相似文献   

15.
We carried out an investigation on the influence of several alkylamines, frequently present in reactions carried out in microemulsions, on the properties of the water/AOT/isooctane system. The presence of alkylamines has an important effect on the electrical percolation phenomena. This effect of amines on the electrical percolation of microemulsions of AOT/isooctane/water can be explained by taking into account the ability of these substrates to associate with the AOT film in the microemulsion, the basicity of the amine, and the different solubility of the amine in the three pseudophases of the system. Copyright 2000 Academic Press.  相似文献   

16.
We review and summarize the three-phase behavior and solubilization of microemulsions with catanionic surfactants. Particular emphasis is placed to the three-phase behavior of mixtures of oil, water and alcohol with mixed surfactants containing one anionic and one cationic surfactant. The effect of salt and catanionic surfactant on the HLB composition and solubilizing capacity of surfactants to form microemulsions is discussed.  相似文献   

17.
The catalytic activity of Chromobacterium viscosum lipase (CV-lipase) was estimated across varying surfactant tail lengths (C-10-C-18) in water-in-oil (w/o) microemulsions of cationic surfactants containing four different hydroxyethyl-substituted head groups. An attempt to find a correlation, if any, between the activity of interfacially solubilized lipase and the varying surfactant tails was made for the first time in micellar enzymology. The second-order rate constant, k2, in lipase-catalyzed hydrolysis of p-nitrophenyl-n-hexanoate at pH 6.0 and 25 degrees C shows an improvement in enzyme activity (approximately 30-140%) across different head groups of amphiphiles with increasing tail lengths in varying solution compositions. Improvement of enzyme activity is prominent in ascending from C-10 to C-14/C-16, depending on the nature of polar head group. The hydrolytic activity of lipase in different surfactant (50 mM)/water/isooctane/n-hexanol with varying z= [alcohol]/[surfactant] (6.4 or 4.8) was amplified by 25-250% with increment in surfactant tail length in comparison with widely used cationic w/o microemulsions having solution compositions (z=16). As a notable outcome of this research, we found w/o microemulsions of 25 mM tetradecyltrimethylammonium bromide/water/isooctane/n-hexanol (z=8) producing the highest ever activity of lipase in any w/o microemulsions.  相似文献   

18.
Polymer–droplet interactions have been studied in AOT/water/isooctane oil-continuous microemulsions mixed with an amphiphilic graft copolymer, or with the parent homopolymer (AOT = sodium bis(2-ethylhexyl) sulfosuccinate). The graft copolymer has an oil-soluble poly(dodecyl methacrylate) backbone and water-soluble poly(ethylene glycol) side chains. Pseudo-ternary polymer/droplet/isooctane phase diagrams have been established for both the parent homopolymer and the graft copolymer, and the two types of mixture display entirely different phase behavior. The homopolymer–droplet interaction is repulsive, and a segregative phase separation occurs at high droplet concentrations. By contrast, the graft copolymer–droplet interaction is attractive: the polymer is insoluble in the pure oil, but dissolves in the microemulsion. A comparatively high concentration of droplets is required to solubilize even small amounts of polymer. Static and dynamic light scattering has been performed in order to obtain information on structure and dynamics in the two types of mixture. For optically matched microemulsions, with a vanishing excess polarizability of the droplets, the polymer dominates the intensity of scattered light. The absolute intensity of scattered light increases as phase separation is approached owing to large-scale concentration fluctuations. Dynamic light scattering shows two populations of diffusion coefficients; one population originates from “free” microemulsion droplets and the other from the polymer (for homopolymer mixtures) or from polymer–droplet aggregates (for mixtures with the graft copolymer). The graft copolymer forms large polymer–droplet aggregates with a broad size distribution, which coexist with a significant fraction of free droplets.  相似文献   

19.
AOT/H_2O/油微乳液体系的浊度、密度和微观结构   总被引:1,自引:0,他引:1  
建立了通过精密测量密度、折射率和浊度研究微乳液滴微观性质的方法,获得水与表面活性剂的摩尔比r分别为10.5和12的AOT/H2O/甲苯微乳液体系液滴的微观结构及相互作用参数,得到AOT分子的长度L=1.07nm,用液滴间的相互作用讨论了相变温度与r的关系.用L=1.07nm,通过密度测量得到AOT/H2O/甲苯和AOT/H2O/环己烷两个微乳液体系不同r值下液滴的微观结构参数,与文献报导的数据吻合得很好.发现在微乳液滴中的水的密度明显大于自由水的密度,并随溶剂变化,而AOT分子的构型不变.  相似文献   

20.
建立了通过精密测量密度、折射率和浊度研究微乳液滴微观性质的方法,获得水与表面活性剂的摩尔比r分别为10.5和12的AOT/H2O/甲苯微乳液体系液滴的微观结构及相互作用参数,得到AOT分子的长度L=1.07 nm,用液滴间的相互作用讨论了相变温度与r的关系.用L=1.07 nm,通过密度测量得到AOT/H2O/甲苯和AOT/H2O/环己烷两个微乳液体系不同r值下液滴的微观结构参数,与文献报导的数据吻合得很好.发现在微乳液滴中的水的密度明显大于自由水的密度,并随溶剂变化,而AOT分子的构型不变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号