首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
气质联用仪法测定奶粉中多环芳烃   总被引:4,自引:0,他引:4  
研究了奶粉中多环芳烃的气相色谱/质谱(GC/MS)测定方法. 样品经甲醇-KOH皂化后用甲苯提取, 提取液经微孔滤膜过滤后用气相色谱质谱仪测定其含量, 外标法定量. 结果16种PAHs的回收率范围为92.0%~106%;RSD为2.2%~4.7%. 方法能同时分离16种PAHs, 适合于奶粉中多环芳烃的分析测定.  相似文献   

2.
3.
A novel simplified sample preparation method for quantitative analysis of polycyclic aromatic hydrocarbons (PAH) in water samples by gas chromatography/mass spectrometry (GC/MS) was proposed. The method requires just 1 mL of water and 1 mL of dichloromethane. The detection limits of PAH with the use of high resolution GC/MS are about 1 μg/Λ, while the limits of quantification—10 μg/L. These limits correspond to those for the standard 8270 method of the United States Environmental Protection Agency.  相似文献   

4.
A simple and fast solid-phase microextraction method coupled with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry was developed for analysis of polycyclic aromatic hydrocarbons in edible oil, performed directly in a hexane solution of the oil. Sampling conditions (solvent used, extraction time, extraction temperature and fiber rinsing time) were optimized by using a sample of oil fortified with a standard solution of polycyclic aromatic hydrocarbons. The method was validated by calculating linear range, correlation coefficient, accuracy, repeatability, detection limit and quantification limit. The method was applied to several oils collected from the market and directly from an olive pomace extraction plant.  相似文献   

5.
A novel matrix solid-phase dispersion (MSPD) extraction method was developed to extract simultaneously 23 phenolic compounds from wine samples prior to determination by gas chromatography with mass spectrometric detection in the selected ion monitoring mode. Different parameters of the MSPD technique such as dispersant solid-phase, eluting solvent, and sample ionic strength and pH were optimized. The optimized MSPD procedure requires a small volume of wine (1 mL), commercial silica gel (1.5 g) as dispersant solid-phase and a small volume of ethyl acetate (5 mL) as eluting solvent. Under these conditions, the extraction of the studied compounds was almost complete (mean values of recoveries between 87 and 109%) in a short time (15 min). Moreover, satisfactory standard deviations of repeatability (RSD<9% in most cases), linear regression coefficients (r(2)>0.993) and detection limits (<8 microg/L) confirm the usefulness of the methodology for routine monitoring of the concentration of individual phenolic antioxidants in wines. Application was illustrated by analysis of different wine samples.  相似文献   

6.
A novel analytical approach has been developed and evaluated for the quantitative analysis of a selected group of widely used pesticides (dimethoate, simazine, atrazine, diuron, terbuthylazine, methyl-parathion, methyl-pirimiphos, endosulfan I, endosulfan II, endosulfan sulphate, cypermethrin and deltamethrin), which can be found at trace levels in olive oil and olives. The proposed methodology is based on matrix solid-phase dispersion (MSPD), (with a preliminary liquid-liquid extraction in olive oil samples) using aminopropyl as sorbent material with a clean-up performed in the elution step with Florisil, followed by mass spectrometric identification and quantitation of the selected pesticides using both gas chromatography-mass spectrometry (GC-MS) in selected ion monitoring (SIM) mode and liquid chromatography tandem mass spectrometry (LC-MS-MS) in positive ionization mode. The recoveries obtained (with mean values between 85 and 115% (obtained at different fortification levels) with RSD values below 10% in most cases, confirm the usefulness of the proposed methodology for the analyses of these kind of complex samples with a high fat content. Moreover, the obtained detection limits, which were below 5 microg kg(-1) by LC-MS analyses and ranged from 10 to 60 microg kg(-1) by GC-MS meet the requirements established by the olive oil pesticide regulatory programs. The method was satisfactorily applied to different olives and olive oil samples.  相似文献   

7.
建立了固相萃取、毛细柱气相色谱-质谱、内标标准曲线法使用选择离子(SIM)监测采集数据定量分析水中硝基苯类有机化合物的分析方法.通过对固相萃取柱的选择、固相萃取条件(样品溶液的pH、上样速率、上样体积、洗脱液选择及配比)的优化,得出了最佳实验条件.始漏体积达1.5 L.回收率大于80%.检出限为0.015~0.045 μg/L.RSD在1.1%~5.9%之间.  相似文献   

8.
A multiresidue method was developed for the determination of 12 organophosphorus insecticides (diazinon, parathion methyl, fenitrothion, pirimiphosmethyl, malathion, fenthion, chlorpyrifos, quinalphos, methidathion, ethion, azinphosmethyl, coumaphos), one carbamate (pirimicarb), and one amidine (amitraz) in unifloral and multifloral honeys. The analytical procedure was based on the matrix solid-phase dispersion of honey on a mixture of Florisil and anhydrous sodium sulfate in small glass columns and subsequent extraction with a low volume of hexane-ethyl acetate (90 + 10, v/v), assisted by sonication. The insecticide residues were determined by capillary chromatography with nitrogen-phosphorus detection and confirmed by mass spectrometry. Average recoveries at the 0.05-0.5 microg/g levels were >80% for organophosphorus insecticides and about 60% for the other insecticides, pirimicarb and amitraz, with relative standard deviations <10%. The detection limit for the different insecticides ranged between 6 and 15 microg/kg. The main advantages of the proposed method are that extraction and cleanup are performed in a single step with a low volume of organic solvent. The method is simple, rapid, and less laborious than conventional methods. Several Spanish honeys were analyzed with the proposed method and no residues of the studied insecticides were found.  相似文献   

9.
Summary Using a two-step liquid chromatographic separation on normalphase cartridges, crude extracts of diesel particulate matter can be separated without time-consuming sample handling into special fractions which mainly contain slightly-polar oxygenated polycyclic aromatic hydrocarbons (oxy-PAH) and nitrated polycyclic aromatic hydrocarbons (nitro-PAH). Subsequent analysis was by fused-silica capillary gas chromatography on a SE54 column along with flame-ionisation (GC/FID) and positive-ion electron-impact mass spectrometric detection (GC/MS) respectively. A number of individual oxy-PAH belonging to four different chemical classes (ketones, quinones, anhydrides and aldehydes) and several individual nitro-PAH were characterized by their retention times and mass spectra. Presented at the 15th International Symposium on Chromatography, Nürnberg, October 1984  相似文献   

10.
A solid-phase microextraction (SPME)-gas chromatography (GC)-mass spectrometry (MS) analytical method for the simultaneous separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) from aqueous samples has been developed, based on the sorption of target analytes on a selectively sorptive fibre and subsequent desorption of analytes directly into GC-MS. The influence of various parameters on PAH extraction efficiency by SPME was thoroughly studied. Results show that the fibre exposure time and the use of agitation during exposure are critical in enhancing SPME performance. The presence of colloidal organic matter (as simulated by humic acid) in water samples is shown to significantly reduce the extraction efficiency, suggesting that SPME primarily extracts the truly dissolved compounds. This offers the significant advantage of allowing the differentiation between freely available dissolved compounds and those associated with humic material and potentially biologically unavailable. The method showed good linearity up to 10 μg/l. The reproducibility of the measurements expressed as relative standard deviation (R.S.D.) was generally <20%. The method developed was then applied to extract PAHs from sediment porewater samples collected from the Mersey Estuary, UK. Total PAH concentrations in porewater were found to vary between 95 and 742 ng/l with two to four ring PAHs predominating. Results suggest that SPME has the potential to accurately determine the dissolved concentrations of PAHs in sediment porewater.  相似文献   

11.
Manual solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is applied for the determination of polycyclic aromatic hydrocarbons (PAHs) from natural matrix through a distilled water medium. Seven of the 16 PAH standards (naphthalene, acenaphthene, fluorene, anthracene, fluoranthene, pyrene, benzo[a]anthracene) are spiked on a marine muddy sediment. The samples, containing PAHs in the range of 10-20 ppm, are then aged at room temperature more than 10 days before analysis. The influence of the matrix, SPME adsorption time, pH, salt content, and SPME adsorption temperature are investigated. The reproducibility of the technique is less than 13% (RDS) for the first 6 considered PAHs and 28% (RDS) for benzo(a)anthracene with a fiber containing a 100-micron poly dimethylsiloxane coating. Linearity extended in the range of 5-50 picograms for PAHs direct injection, 5-70 picograms for PAHs in water, and 1-170 picograms for PAHs in sediment. The detection limit is estimated less than 1 microgram/kg of dry sample for the first 6 considered PAHs in sediment and 1.5 micrograms/kg of dry sample for benzo(a)anthracene using the selected ion monitoring mode in GC-MS. The recoveries of the considered PAHs are evaluated.  相似文献   

12.
Summary Since the carcinogenic effect of emissions from hard coal briquet-fired furnaces is almost entirely caused by polycyclic aromatic compounds (PAC) with more than three rings, the composition of this fraction has been analyzed in detail.More than 170 neutral [111 polycyclic aromatic hydrocarbons (PAH), 57 thiaarenes, 6 oxaarenes] and 70 basic (azaarenes) compounds were characterized as PAC by means of GC/MS (limit of detection 0.1 mg/kg briquet). About 80 compounds were identified by comparison with reference standards. In order to obtain unequivocal evidence for the identification of 11 PAH with a molecular weight of 302, the UV- and fluorescence spectra were compared with those of the synthesized reference compounds [naphtho(1,2-k) fluoranthene, dibenz(e,k)acephenanthrylene, naphth-(2,3e) acephenanthrylene, naphtho(2,3-k)fluoranthene, dibenzo (de,qr)naphthacene, coronene, dibenzo(fg,op)naphthacene, naphtho(1,2,3,4-def)chrysene, benzo(b)perylene, dibenzo (-def,j)chrysene, benzo(rst)pentaphene]. In case of the emission condensate from hard coal briquets, PAC containing 6 and more rings cause about 50% of the carcinogenic effect in animal experiments.
Bestimmung von polycyclischen aromatischen Kohlenwasserstoffen, Azaarenen und Thiaarenen in der Emission von Kohle-beheizten Haushaltöfen — Bestandsaufnahme durch GC/MS
Zusammenfassung Da die krebserzeugende Wirkung von Emissionen aus Steinkohlebrikett-beheizten Zimmeröfen nahezu vollständig durch die im Kondensat enthaltenene polycyclischen aromatischen Verbindungen (PAC) mit mehr als 3 Ringen verursacht wird, wurde die Zusammensetzung dieser PAC-Fraktion untersucht.Mehr als 170 neutrale [111 polycyclische aromatische Kohlenwasserstoffe (PAH), 57 Thiaarene, 6 Oxaarene] sowie 70 basische Verbindungen (Azaarene) konnten mit der GC/MS-Kombination als PAC charakterisiert werden (Nachweisgrenze 0,1 mg/kg Brikett). Etwa 80 Verbindungen wurden durch den Vergleich mit Referenzsubstanzen identifiziert. Um in einigen zweifelhaften Fällen die Identität der isolierten mit der synthetischen Verbindung zu bestätigen, wurden bei 11 PAH mit einem Molgewicht von 302 zusätzlich auch UV- und Fluorescenzspektren verglichen [Naphtho(1,2-k)fluoranthen, Dibenz(e,k)acephenanthrylen, Naphth(2,3-e)acephenanthrylen, Naphtho(2,3-k)fluoranthen, Dibenzo(de,qr)naphthacen, Coronen, Dibenzo(fg,op)naphthacen, Naphtho(1,2,3,4-def)chrysen, Benzo(b)perylen, Dibenzo(def,j)chrysen, Benzo(rst)pentaphen]. Diese Verbindungen sind von besonderem Interesse, da PAC mit 6 und mehr Ringen im Tierversuch etwa 50% der carcinogenen Wirkung des Steinkohlenbrikett-Emissionskondensates verursachen.
  相似文献   

13.
This study describes the determination of polycyclic aromatic hydrocarbons (PAHs) in water using high-performance liquid chromatography (HPLC) coupled with fluorescence detection (FLD). Because individual PAHs are generally present in water only at trace levels, a sensitive and accurate determination technique is essential. The separation and detection of five PAHs were run completely within 25 min by the HPLC/FLD system with an analytical C18 column, a fluorescence detection, and acetonitrile-water gradient elution. Calibration graphs were linear with very good correlation coefficients (r > 0.9998), and the detection limits were in the range of 2-6 ng/l for five PAHs. Solid phase microextraction (SPME) was performed for sample pretreatment prior to HPLC-FLD determination, and the governing parameters were investigated. Compared to conventional methods, SPME has high recovery, saves considerable time, and reduces solvents waste. The extraction efficiencies of five PAHs were above 88% and the extraction times were 35 min in one pretreatment procedure. One particular discovery is that 1.5 M sodium monochloroactate (ClCH2COONa) can improve the extraction yield of PAH compounds more than other inorganic salts. The SPME-HPLC-FLD technique provides a relatively simple, convenient, practical procedure, which was here successfully applied to determine five PAHs in water from authentic water samples.  相似文献   

14.
We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen 13C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86–115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM2.5 samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM2.5 samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method.   相似文献   

15.
Thirteen polycyclic aromatic hydrocarbons have been determined in soy‐based nutraceutical products. First, an optimization of extraction procedure was performed, and a solid–liquid extraction assisted by sonication and a dilute and shoot procedure were compared, selecting the dilute and shoot approach for the extraction of target compounds, utilizing a mixture of acetone/n‐hexane (1:1 v/v) as extractant solvent. After this, a clean‐up step was needed bearing in mind the complexity of these matrices. Dispersive solid‐phase extraction, using a mixture of C18 and Zr‐Sep+ (25 mg/mL each) was used. The separation was achieved by gas chromatography and detection with triple quadrupole tandem mass spectrometry. For quantification purposes, matrix‐matched calibration was used. The validation was applied at three concentration levels (20, 100 and 250 μg/kg), obtaining recoveries between 70 and 120% and precision values equal to or lower than 23%. Limits of detection and quantification were below 8 and 20 μg/kg, respectively. The method was applied in 11 samples, detecting five polycyclic aromatic hydrocarbons at concentrations ranging from 4.1 to 18.5 μg/kg.  相似文献   

16.
Zheng L  Chen H  Chen J  Feng Z  Gao S  Zhou J 《色谱》2011,29(12):1173-1178
建立了一种简单、准确的测定热塑性弹性体中16种多环芳烃(PAHs)的气相色谱-质谱(GC-MS)方法。考察了样品制备、萃取溶剂、萃取方法、时间以及温度对厂家制备的阳性热塑性弹性体样品中PAHs提取效率的影响,确定了萃取条件和方法。样品经甲苯超声萃取、浓缩后用环己烷溶解、二甲亚砜液液萃取净化后采用GC-MS进行分析,内标法定量。通过对不同材质阳性热塑性弹性体样品的加标回收、精密度试验等对建立的方法进行评价,16种PAHs的平均回收率为70%~117%,精密度为0.2%~10.8%。该方法适合于热塑性弹性体中PAHs的测定。  相似文献   

17.
Given the potential risks of chlorinated polycyclic aromatic hydrocarbons, the analysis of their presence in water is very urgent. We have developed a novel procedure for determining chlorinated polycyclic aromatic hydrocarbons in water based on solid‐phase extraction coupled with gas chromatography and mass spectrometry. The extraction parameters of solid‐phase extraction were optimized in detail. Under the optimal conditions, the proposed method showed wide linear ranges (1.0–1000 ng/L) with correlation coefficients ranging from 0.9952 to 0.9998. The limits of detection and the limits of quantification were in the range of 0.015–0.591 and 0.045–1.502 ng/L, respectively. Recoveries ranged from 82.5 to 102.6% with relative standard deviations below 9.2%. The obtained method was applied successfully to the determination of chlorinated polycyclic aromatic hydrocarbons in real water samples. Most of the chlorinated polycyclic aromatic hydrocarbons were detected and 1‐monochloropyrene was predominant in the studied water samples. This is the first report of chlorinated polycyclic aromatic hydrocarbons in water samples in China. The toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in the studied tap water were 9.95 ng the toxic equivalency quotient m?3. 9,10‐Dichloroanthracene and 1‐monochloropyrene accounted for the majority of the total toxic equivalency quotients of chlorinated polycyclic aromatic hydrocarbons in tap water.  相似文献   

18.
A fully automated sample pretreatment method was developed for the detection of mono and dihydroxy metabolites of polycyclic aromatic hydrocarbons (PAHs) by gas chromatography-mass spectrometry in the selected ion monitoring mode. Direct immersion solid-phase microextraction for the extraction of target compounds and the headspace on-fiber silylation with N,O-bis(trimethylsilyl)trifluoroacetamide were performed automatically by a multipurpose autosampler (MPS2). The operating conditions including extraction time, derivatization time, ionic strength, pH, and incubation temperature were optimized. Calibration responses of nine metabolites of PAHs over a concentration range of 0.1-100 microg L(-1) with a correlation coefficient of 0.999 were obtained. The detection limits of the nine metabolites in mini pore water, minimal salts medium and soil extract culture medium were in the range of 0.001-0.013, 0.002-0.024 and 0.002-0.134 microg L(-1), respectively, while the respective quantification limits were 0.003-0.044, 0.005-0.081 and 0.008-0.447 microg L(-1). The reliability was confirmed by the traditional solid-phase extraction method. The proposed method could be used to analyze the metabolites of PAHs degraded by microorganisms such as algae and to determine the biodegradation pathways of PAHs.  相似文献   

19.
A method for the determination of 27 polycyclic aromatic hydrocarbons (PAHs) in sludge from wastewater treatment plants (WWTPs) located in urban, industrial or rural zones is presented. PAHs were extracted by matrix solid-phase dispersion (MSPD) assisted by sonication. Purification of extracts was carried out by solid-phase extraction with C(18) and PAHs were eluted with acetonitrile. PAHs were determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion-monitoring mode (GC-MS-SIM), using deuterated PAHs as internal standards. The limits of detection ranged from 0.03 ng/g for acenaphthylene to 0.45 ng/g for benzo[b]naphtho[2,1-d]thyophene. After optimization, the method was validated with a certified reference sludge. The proposed analytical method was applied to determine PAH levels in sewage sludge samples collected from 19 water treatment plants located in the province of Madrid (Spain). In most of the examined samples, phenanthrene was the main compound with a mean concentration of 1062 ng/g. PAHs were detected in all of the samples, with total concentrations between 390 and 6390 ng/g dry weight for the 27 PAHs analyzed and from 310 to 5120 ng/g dry weight for the sum of the 10 PAHs considered in the draft European Union directive.  相似文献   

20.
Ming-Chi Wei 《Talanta》2007,72(4):1269-1274
The novel pretreatment technique, microwave-assisted heating coupled to headspace solid-phase microextraction (MA-HS-SPME) has been studied for one-step in situ sample preparation for polycyclic aromatic hydrocarbons (PAHs) in aqueous samples before gas chromatography/flame ionization detection (GC/FID). The PAHs evaporated into headspace with the water by microwave irradiation, and absorbed directly on a SPME fiber in the headspace. After being desorbed from the SPME fiber in the GC injection port, PAHs were analyzed by GC/FID. Parameters affecting extraction efficiency, such as SPME fiber coating, adsorption temperature, microwave power and irradiation time, and desorption conditions were investigated.Experimental results indicated that extraction of 20 mL aqueous sample containing PAHs at optional pH, by microwave irradiation with effective power 145 W for 30 min (the same as the extraction time), and collection with a 65 μm PDMS/DVB fiber at 20 °C circular cooling water to control sampling temperature, resulted in the best extraction efficiency. Optimum desorption of PAHs from the SPME fiber in the GC hot injection port was achieved at 290 °C for 5 min. The method was developed using spiked water sample such as field water with a range of 0.1-200 μg/L PAHs. Detection limits varied from 0.03 to 1.0 μg/L for different PAHs based on S/N = 3 and the relative standard deviations for repeatability were <13%. A real sample was collected from the scrubber water of an incineration system. PAHs of two to three rings were measured with concentrations varied from 0.35 to 7.53 μg/L. Recovery was more than 88% and R.S.D. was less than 17%. The proposed method is a simple, rapid, and organic solvent-free procedure for determination of PAHs in wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号