首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We obtain a conserved quantity for a reversible cellular automaton derived from a discrete-time quantum walk in one dimension. As a corollary, we give detailed information regarding the evolution of the quantum walk.  相似文献   

2.
We define a class of dynamical maps on the quasi-local algebra of a quantum spin system, which are quantum analoges of probabilistic cellular automata. We develop criteria for such a system to be ergodic, i.e., to posses a unique invariant state. Intuitively, ergodicity obtains if the local transition operators exhibit sufficiently large disorder. The ergodicity criteria also imply bounds for the exponential decay of correlations in the unique invariant state. The main technical tool is a quantum version of oscillation norms, defined in the classical case as the sum over all sites of the variations of an observable with respect to local spin flips.  相似文献   

3.
We present a quantum cellular automaton model in one space-dimension which has the Dirac equation as emergent. This model, a discrete-time and causal unitary evolution of a lattice of quantum systems, is derived from the assumptions of homogeneity, parity and time-reversal invariance.  相似文献   

4.
A natural architecture for nanoscale quantum computation is that of a quantum cellular automaton. Motivated by this observation, we begin an investigation of exactly unitary cellular automata. After proving that there can be no nontrivial, homogeneous, local, unitary, scalar cellular automaton in one dimension, we weaken the homogeneity condition and show that there are nontrivial, exactly unitary, partitioning cellular automata. We find a one-parameter family of evolution rules which are best interpreted as those for a one-particle quantum automaton. This model is naturally reformulated as a two component cellular automaton which we demonstrate to limit to the Dirac equation. We describe two generalizations of this automaton, the second, of which, to multiple interacting particles, is the correct definition of a quantum lattice gas.  相似文献   

5.
The effect of Zeno's paradox in quantum theory is demonstrated with the aid of quantum mechanical cellular automata. It is shown that the degree of non-unitarity of the cellular automaton evolution and the frequency of consecutive measurements of cellular automaton states are operationally indistinguishable.  相似文献   

6.
Computation theory of cellular automata   总被引:25,自引:0,他引:25  
  相似文献   

7.
This paper explores the possibility of an event interpretation of quantum field theory.Research performed during stays at Utrecht State University at the Institute for the History and Foundations of Science.  相似文献   

8.
It is shown that if zero-point oscillations are assumed to exist, quantum field theory will lack the determinism of classical physics. Scientific Research Institute for Nuclear Physics, Moscow University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 71–74, May, 1996.  相似文献   

9.
The star-quantization of the free scalar field is developed by introducing an integral representation of the normal star-product. A formal connection between the Feynman path integral in the holomorphic representation and the star-exponential is established for the interacting scalar fields.  相似文献   

10.
Clifford quantum cellular automata (CQCAs) are a special kind of quantum cellular automata (QCAs) that incorporate Clifford group operations for the time evolution. Despite being classically simulable, they can be used as basic building blocks for universal quantum computation. This is due to the connection to translation-invariant stabilizer states and their entanglement properties. We will give a self-contained introduction to CQCAs and investigate the generation of entanglement under CQCA action. Furthermore, we will discuss finite configurations and applications of CQCAs.  相似文献   

11.
12.
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis' quantum relativity. The recently proposed classical relativistic quantum theory of Prugoveki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (elementary particles). The main new aspect of this quantum mechanics is that provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that quarks should be considered as quantum relativistic particles.Supported by the Hungarian Academy of Sciences.  相似文献   

13.
It is pointed out that a slight modification of the relativistic quantum theory of a free electron in a uniform wiggler field enables the study of motion in a tapered wiggler field of the form kw1 = kw ? bz which merits attention. The lower limit of z is 800 cm. The exact relativistic quantum mechanical calculation shows an enhancement in the gain for single pass. The frequencies are up-shifted by amounts depending on the parameter b.  相似文献   

14.
We demonstrate that a quantum-dot cellular automata device can be fabricated using electron beam lithographically defined gates on GaAs/AlGaAs heterostructure materials, and that by tuning the four quantum dot (J. Phys. C: Solid State Phys. 21 (1988) L893) system polarization of one double dot can lead to polarization in the neighboring double dot (Phys. Rev. B 67 (2003) 033302). The polarization is detected using a 1-D or 0-D channel defined next to one pair of double dots which acts as a non-invasive voltage probe (Phys. Rev. Lett. 70 (1993) 1311). Ultimately a cellular automata device should be isolated from reservoirs to prevent charge fluctuations caused by co-tunneling. The non-invasive voltage probe is used to show that coupled double dots isolated from reservoirs can be made to have a sharper polarization transition. By studying the broadening of the polarization signal from a coupled double dot system isolated from reservoirs, we deduce the charge dephasing times for intra dot scattering to be more than 0.2 ns (Phys. Rev. B 67 (2003) 073302).  相似文献   

15.
Various regularisation techniques are presently emerging from the field of noncommutative geometry. We focus on the possibility of introducing nonzero minimal uncertainties in positions and momenta into the quantum field theoretical framework. Thereby we use techniques that have been developed in the field of quantum groups. The regularisation of a quadratic ultraviolet divergency inφ 4 theory is given explicitely. We also discuss the underlying idea that such uncertainties in position or momentum measurements originate in gravity.  相似文献   

16.
17.
The quantum field theory in terms of Fourier hyperfunctions is constructed. The test function space for hyperfunctions does not containC functions with compact support. In spite of this defect the support concept ofH-valued Fourier hyperfunctions allows to formulate the locality axiom for hyperfunction quantum field theory.  相似文献   

18.
We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second order wave equation. The theory takes the form of either a functional integral with quaternion-imaginary Lagrangian, or a Schrödinger equation and transformation theory for quaternion-valued wave functions, with a quaternion-imaginary Hamiltonian. The connection between the two formulations is developed in detail, and many related issues, including the breakdown of the correspondence principle and the Hilbert space structure, are discussed.  相似文献   

19.
We examine canonical quantization of relativistic field theories on the forward hyperboloid, a Lorentz-invariant surface of the form xμxμ = τ2. This choice of quantization surface implies that all components of the 4-momentum operator are affected by interactions (if present), whereas rotation and boost generators remain interaction free—a feature characteristic of Dirac’s “point-form” of relativistic dynamics. Unlike previous attempts to quantize fields on space-time hyperboloids, we keep the usual plane-wave expansion of the field operators and consider evolution of the system generated by the 4-momentum operator. We verify that the Fock-space representations of the Poincaré generators for free scalar and spin-1/2 fields look the same as for equal-time quantization. Scattering is formulated for interacting fields in a covariant interaction picture and it is shown that the familiar perturbative expansion of the S-operator is recovered by our approach. An appendix analyzes special distributions, integrals over the forward hyperboloid, that are used repeatedly in the paper.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号