首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李东  王慧  杨丹  张小洪  王时龙 《中国物理 B》2008,17(11):4091-4099
In this work, the stability issues of the equilibrium points of the cellular neural networks with multiple time delays and impulsive effects are investigated. Based on the stability theory of Lyapunov-Krasovskii, the method of linear matrix inequality (LMI) and parametrized first-order model transformation, several novel conditions guaranteeing the delaydependent and the delay-independent exponential stabilities are obtained. A numerical example is given to illustrate the effectiveness of our results.  相似文献   

2.
王耀南  谭文  段峰 《中国物理》2006,15(1):89-94
This paper deals with the robust fuzzy control for chaotic systems in the presence of parametric uncertainties. An uncertain Takagi--Sugeno fuzzy model for a Lorenz chaotic system is first constructed. Then a robust fuzzy state feedback control scheme ensures the control for stable operations under bounded parametric uncertainties. For a chaotic system with known uncertainty bounds, a robust fuzzy regulator is designed by choosing the control parameters satisfying the linear matrix inequality. To verify the validity and effectiveness of the proposed controller design method, an analysis technique is suggested and applied to the control of an uncertain Lorenz chaotic system.  相似文献   

3.
卢俊国 《中国物理》2005,14(4):703-708
A new chaotification method is proposed for making an arbitrarily given discrete Takagi-Sugeno (TS) fuzzy system chaotic. Based on a given discrete TS fuzzy system, the new chaotification method uses the decentralized state-feedback control and the continuous sawtooth function, instead of the modulo operation, to construct a chaotic nonlinear system,which can generate discrete chaos with the arbitrarily desired amplitude bound. We apply the improved Marotto theorem to mathematically prove that the controlled system is chaotic in the sense of Li and Yorke. In particular, an explicit formula for the computation of chaotification parameters is obtained. A numerical example is used to illustrate the theoretical results.  相似文献   

4.
马大中  张化光  王占山  冯健 《中国物理 B》2010,19(5):50506-050506
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi--Sugeno (T--S) fuzzy model is employed to represent the chaotic system dynamics. To acquire the good performance and produce less conservative analysis result, a new parameter-dependent Lyapunov--Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.  相似文献   

5.
M. Syed Ali 《中国物理 B》2011,20(8):80201-080201
In this paper,the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered.A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs.The proposed stability conditions are demonstrated through numerical examples.Furthermore,the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed.Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature.  相似文献   

6.
彭世国  禹思敏 《中国物理 B》2009,18(9):3758-3765
A control approach where the fuzzy logic methodology is combined with impulsive control is developed for controlling some time-delay chaotic systems in this paper. We first introduce impulses into each subsystem with delay of the Takagi--Sugeno (TS) fuzzy IF--THEN rules and then present a unified TS impulsive fuzzy model with delay for chaos control. Based on the new model, a simple and unified set of conditions for controlling chaotic systems is derived by the Lyapunov--Razumikhin method, and a design procedure for estimating bounds on control matrices is also given. Several numerical examples are presented to illustrate the effectiveness of this method.  相似文献   

7.
M. Syed Ali 《中国物理 B》2012,21(7):70207-070207
This paper presents the stability analysis for a class of neural networks with time varying delays that are represented by the Takagi-Sugeno (T-S) model. The main results given here focus on the stability criteria using a new Lyapunov functional. New relaxed conditions and new linear matrix inequality-based designs are proposed that outperform the previous results found in the literature. Numerical examples are provided to show that the achieved conditions are less conservative than the existing ones in the literature.  相似文献   

8.
马铁东  张化光  浮洁 《中国物理 B》2008,17(12):4407-4417
This paper is devoted to investigating the scheme of exponential synchronization for uncertain stochastic impulsive perturbed chaotic Lur'e systems. The parametric uncertainty is assumed to be norm bounded. Based on the Lyapunov function method, time-varying delay feedback control technique and a modified Halanay inequality for stochastic differential equations, several sufficient conditions are presented to guarantee the exponential synchronization in mean square between two identical uncertain chaotic Lur'e systems with stochastic and impulsive perturbations. These conditions are expressed in terms of linear matrix inequalities (LMIs), which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. It is worth pointing out that the approach developed in this paper can provide a more general framework for the synchronization of multi-perturbation chaotic Lur'e systems, which reflects a more realistic dynamics. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed method.  相似文献   

9.
A whole impulsive control scheme of nonlinear systems with time-varying delays, which is an extension for impulsive control of nonlinear systems without time delay, is presented in this paper. Utilizing the Lyapunov functions and the impulsive-type comparison principles, we establish a series of different conditions under which impulsively controlled nonlinear systems with time-varying delays are asymptotically stable. Then we estimate upper bounds of impulse interval and time-varying delays for asymptotically stable control. Finally a numerical example is given to illustrate the effectiveness of the method.  相似文献   

10.
A scheme for the impulsive control of nonlinear systems with time-varying delays is investigated in this paper. Based on the Lyapunov-like stability theorem for impulsive functional differential equations (FDEs), some sufficient conditions are presented to guarantee the uniform asymptotic stability of impulsively controlled nonlinear systems with time-varying delays. These conditions are more effective and less conservative than those obtained. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

11.
陈亮名  李传江  孙延超  马广富 《中国物理 B》2017,26(6):68703-068703
This paper investigates the cooperative formation problem via impulsive control for a class of networked Euler–Lagrange systems. To reduce the energy consumption and communication frequency, the impulsive control method and cooperative formation control approach are combined. With the consideration of system uncertainties and communication delays among agents, neural networks-based adaptive technique is used for the controller design. Firstly, under the constraint that each agent interacts with its neighbors only at some sampling moments, an adaptive neural-networks impulsive formation control algorithm is proposed for the networked uncertain Euler–Lagrange systems without communication delays. Using Lyapunov stability theory and Laplacian potential function in the graph theory, we conclude that the formation can be achieved by properly choosing the constant control gains. Further, when considering communication delays,a modified impulsive formation control algorithm is proposed, in which the extended Halanay differential inequality is used to analyze the stability of the impulsive delayed dynamical systems. Finally, numerical examples and performance comparisons with continuous algorithm are provided to illustrate the effectiveness of the proposed methods.  相似文献   

12.
刘兴文  黄勤珍  高心  邵仕泉 《中国物理》2007,16(8):2272-2277
The impulsive control of chaotic systems, which are subjected to unbounded exogenous perturbations, is considered. By using the theory of impulsive differential equation together with the fuzzy control technique, the authors propose an impulsive robust chaos controlling criterion expressed as linear matrix inequalities (LMIs). Based on the proposed control criterion, the procedure for designing impulsive controllers of common (perturbed) chaotic systems is provided. Finally, a numerical example is given to demonstrate the obtained theoretical result.  相似文献   

13.
楼旭阳  崔宝同 《中国物理 B》2008,17(12):4434-4439
This paper focuses on sliding mode control problems for a class of nonlinear neutral systems with time-varying delays. An integral sliding surface is firstly constructed. Then it finds a useful criteria to guarantee the global stability for the nonlinear neutral systems with time-varying delays in the specified switching surface, whose condition is formulated as linear matrix inequality. The synthesized sliding mode controller guarantees the reachability of the specified sliding surface. Finally, a numerical simulation validates the effectiveness and feas.ibility of the proposed technique.  相似文献   

14.
The stability of impulsive fractional-order systems is discussed.A new synchronization criterion of fractional-order chaotic systems is proposed based on the stability theory of impulsive fractional-order systems.The synchronization criterion is suitable for the case of the order 0 q ≤ 1.It is more general than those of the known results.Simulation results are given to show the effectiveness of the proposed synchronization criterion.  相似文献   

15.
谭文  王耀南  段峰  李晓辉 《中国物理》2006,15(11):2529-2534
This paper studies the robust fuzzy control for nonlinear chaotic system in the presence of parametric uncertainties. An uncertain Takagi--Sugeno (T--S) fuzzy model is employed for fuzzy modelling of an unknown chaotic system. A sufficient condition formulated in terms of linear matrix inequality (LMI) for the existence of fuzzy controller is obtained. Then the output feedback fuzzy-model-based regulator derived from the LMI solutions can guarantee the stability of the closed-loop overall fuzzy system. The T--S fuzzy model ofthe chaotic Chen system is developed as an example for illustration. The effectiveness of the proposed controller design methodology is finally demonstrated through computer simulations on the uncertain Chen chaotic system.  相似文献   

16.
张化光  宫大为  王占山 《中国物理 B》2011,20(4):40512-040512
This paper deals with the issue of synchronization of delayed complex networks. Differing from previous results,the delay interval [0,d(t)] is divided into some variable subintervals by employing a new method of weighting delays. Thus,new synchronization criteria for complex networks with time-varying delays are derived by applying this weighting-delay method and introducing some free weighting matrices. The obtained results have proved to be less conservative than previous results. The sufficient conditions of asymptotical synchronization are derived in the form of linear matrix inequality,which are easy to verify. Finally,several simulation examples are provided to show the effectiveness of the proposed results.  相似文献   

17.
王申全  冯健  赵青 《中国物理 B》2012,(12):161-167
<正>In this paper,the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks(CRNNs) with stochastic delay.Different from the common assumptions on time delays,it is assumed that the probability distribution of the delay taking values in some intervals is known a priori.By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique(the reciprocally convex combination method),less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities(LMIs).Two numerical examples show that our results are better than the existing ones.  相似文献   

18.
冯毅夫  张庆灵  冯德志 《中国物理 B》2012,21(10):100701-100701
The global stability problem of Takagi-Sugeno(T-S) fuzzy Hopfield neural networks(FHNNs) with time delays is investigated.Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism.Firstly,using both Finsler’s lemma and an improved homogeneous matrix polynomial technique,and applying an affine parameter-dependent Lyapunov-Krasovskii functional,we obtain the convergent LMI-based stability criteria.Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique.Secondly,to further reduce the conservatism,a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs,which is suitable to the homogeneous matrix polynomials setting.Finally,two illustrative examples are given to show the efficiency of the proposed approaches.  相似文献   

19.
Fuzzy cellular neural networks (FCNNs) are special kinds of cellular neural networks (CNNs). Each cell in an FCNN contains fuzzy operating abilities. The entire network is governed by cellular computing laws. The design of FCNNs is based on fuzzy local rules. In this paper, a linear matrix inequality (LMI) approach for synchronization control of FCNNs with mixed delays is investigated. Mixed delays include discrete time-varying delays and unbounded distributed delays. A dynamic control scheme is proposed to achieve the synchronization between a drive network and a response network. By constructing the Lyapunov–Krasovskii functional which contains a triple-integral term and the free-weighting matrices method an improved delay-dependent stability criterion is derived in terms of LMIs. The controller can be easily obtained by solving the derived LMIs. A numerical example and its simulations are presented to illustrate the effectiveness of the proposed method.  相似文献   

20.
冷卉  吴召艳 《中国物理 B》2016,25(11):110501-110501
Cluster synchronization is an important dynamical behavior in community networks and deserves further investigations.A community network with distributed time delays is investigated in this paper.For achieving cluster synchronization,an impulsive control scheme is introduced to design proper controllers and an adaptive strategy is adopted to make the impulsive controllers unified for different networks.Through taking advantage of the linear matrix inequality technique and constructing Lyapunov functions,some synchronization criteria with respect to the impulsive gains,instants,and system parameters without adaptive strategy are obtained and generalized to the adaptive case.Finally,numerical examples are presented to demonstrate the effectiveness of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号