首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes an analytical method involving a simple solvent extraction for the simultaneous liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) determination of carbosulfan, its most toxic metabolite -carbofuran -, and its other main metabolites - 3-hydroxycarbofuran, 3-ketocarbofuran, 3-hydroxy-7-phenolcarbofuran, 3-keto-7-phenolcarbofuran, 7-phenolcarbofuran and dibutylamine - in oranges. Chromatography was performed on a Zorbax Bonus-RP (150 mm × 2.1 mm, 5 μm). The mobile phase was a ternary gradient water-methanol-acetonitrile with 1.0 mM ammonium acetate at flow rate of 0.2 ml min−1. The LC separation and MS/MS optimization were studied to select the most appropriate operating conditions. The method developed has also been validated. The limits of quantification (LOQs) were from 1 μg kg−1 for carbofuran to 10 μg kg−1 for 3-keto-7-phenolcarbofuran. Extracts spiked with carbosulfan and its metabolites, at LOQ level, yielded average recoveries in the range 60-94%, with relative standard deviations (R.S.D.s) less than 15%. Calibration curves for carbosulfan and its metabolites (range LOQ-1000LOQ) were linear, with coefficients of correlations better than 0.990. The method was successfully applied to establish the primary degradation products in oranges treated with carbosulfan. The LC-MS/MS method developed is simple, rapid, and suitable for the quantification and confirmation of carbosulfan and seven of its main metabolites in orange at levels lower than 10 μg kg−1.  相似文献   

2.
Four liquid chromatography/mass spectrometry (LC/MS) systems, equipped with single quadrupole, triple quadrupole (QqQ), quadrupole ion trap (QIT) and quadrupole time-of-flight (QqTOF) mass analyzers, were evaluated for the analysis of carbosulfan and its main transformation products. The comparison of quantitative aspects (sensitivity, precision and accuracy) was emphasized. Results showed that the triple quadrupole instrument reaches at least 20-fold higher sensitivity (LOD from 0.04 to 0.4 microg kg(-1)) compared to the single quadrupole (4-70 microg kg(-1)), the QIT (4-25 microg kg(-1)) and the QqTOF (4-23 microg kg(-1)) instruments. Recoveries were over 70% for all the analytes, except dibutylamine and 7-phenolcarbofuran. Repeatabilities (within-day) were slightly better by the single quadrupole (5-10%) and the QqQ (5-9%) than by the QIT (12-16%) and the QqTOF (9-16%). Both the QqTOF and QIT offer a linear dynamic range of two orders of magnitude whereas the single quadrupole and QqQ of, at least, three orders of magnitude. The method was applied to analyze carbosulfan field-treated orange samples, in which carbosulfan, carbofuran, 3-hydroxycarbofuran, and dibutylamine were found. As an example, the mean carbosulfan concentration was 20 +/- 0.6 microg kg(-1) measured by the QqQ, 22 +/- 1.2 microg kg(-1) by the single quadrupole, 25 +/- 2.8 microg kg(-1) by the QIT, and 20 +/- 1.8 microg kg(-1) by the QqTOF. Although the QqQ is more sensitive and precise, the mean values obtained by the four instruments are acceptable and comparable. The potential of each technique for the verification of the identity of residues detected in oranges is discussed using the concept of identification points.  相似文献   

3.
罗红霉素及其代谢物的电喷雾离子阱质谱研究   总被引:5,自引:1,他引:4  
采用电喷雾离子阱质谱法对人尿样中的罗红霉素及其10种代谢物进行了结构鉴定,利用质谱解析软件对其质谱裂解途径进行分析,发现它们的(+)ESI-MS2和(+)ESI-MS3质谱分别生成脱红霉糖和脱氨基糖碎片,并可见脱去C9位含氮烷基侧链和一系列质荷比相差18的脱水碎片离子,这些特征可用于罗红霉素及其结构类似物的体内代谢转化研究.  相似文献   

4.
新型抗炎镇痛剂SFZ-47及其代谢物的电喷雾离子阱质谱研究   总被引:7,自引:0,他引:7  
用电喷雾离子阱质谱对警犬尿样中SFZ-47[3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮)及其4种代谢物进行了结构鉴定,利用质谱解析软件分析其裂解方式发现,它们在(+)ESI-MS^2或( )ESI-MS^3质谱中分别生成m/z122和脱吡咯里嗪酮母核的碎片,并发现葡萄苷酸型代谢物易于生成脱水(18u)和脱葡萄醛酸(176u)的碎片离子,这些特征可用于SFZ-47及结构类似物的体内生物转化研究。  相似文献   

5.
A quantitative matrix solid-phase dispersion and liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (LC-APCI-MS) method is outlined for the simultaneous analysis of dithiocarbamates (DTCs) and their degradation products in plants. Compounds analyzed are dazomet, disulfiram, thiram and the metabolites ethylenthiourea and propylenthiourea. The performance of two different sample preparation protocols, the proposed one and other based on solid-phase extraction, as well as, of both atmospheric pressure ionization sources, APCI and electrospray, were compared. The effect of several parameters on the extraction, separation and detection was studied. Dithiocarbamates and metabolites were dispersed with carbograph, eluted with a mixture of dichloromethane-methanol, and then, identified by monitoring the base peak of the spectra corresponding to [M + H]+. The method was validated for avocados, cherries, lemons, nuts, oat, oranges, peaches, rice and tomatoes. Average recoveries varied from 33 to 109%, and relative standard deviation were between 4 and 21% with limits of quantification ranged from 0.25 to 2.5 mg kg(-1), except for thiram and disulfiram, which were not recovered from fruits with high acid content. The procedure was applied to the determination of DTCs and their metabolites in fruits, vegetables and cereals taken from different markets of Valencia, Spain.  相似文献   

6.
The suitability of liquid chromatography tandem mass spectrometry (LC-MS/MS) and gas chromatography mass spectrometry (GC-MS) for the elucidation of fluoxymesterone metabolism has been evaluated. Electrospray ionization (ESI) and collision induced dissociation (CID) fragmentation in LC-MS/MS and electron impact spectra (EI) in GC-MS have been studied for fluoxymesterone and two commercially available metabolites. MS(n) experiments and accurate mass measurements performed by an ion-trap analyser and a QTOF instrument respectively have been used for the elucidation of the fragmentation pathway. The neutral loss scan of 20 Da (loss of HF) in LC-MS/MS has been applied for the selective detection of fluoxymesterone metabolites. In a positive fluoxymesterone doping control sample, 9 different analytes have been detected including the parent compound. Seven of these metabolites were also confirmed by GC-MS including 5 previously unreported metabolites. On the basis of the ionization, the CID fragmentation, the accurate mass of the product ions and the EI spectra of these analytes, a tentative elucidation as well as a proposal for the metabolic pathway of fluoxymesterone has been suggested. The presence of these compounds has also been confirmed by the analysis of five other positive fluoxymesterone urine samples.  相似文献   

7.
The application of mass spectrometry in drug discovery, especially in drug metabolites, is very important. This present paper is at first focused on the elucidation of fragmentation patterns of the phenolic bisbenzyltetrahydroisoquinoline alkaloid, neferine, together with its analogues isoliensinine and liensinine with anti-HIV activities using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and hydrogen/deuterium (H/D) exchange. All title compounds displayed major diagnostic fragments that formed by the cleavage of the C1'--C9' bond resulting in positive group CD, and the loss of 4-ethyl-1-phenol or 4-ethyl-1-methoxybenzene following rearrangements. Their ESI-MS/MS spectra also showed the relatively stable fragment ions formed by the elimination of H2O, CH3NH2, CH3OH, and CH3-N==CH2. Secondly, the metabolites of neferine from dog hepatic microsomal incubations were analyzed and characterized by high-performance liquid chromatography (HPLC) and data-dependent ESI-MS/MS. Based on fragmentation patterns and compared with their retention times in LC, molecular weights and ultraviolet (UV) absorbances with standard compounds, six metabolites were identified as isoliensinine, liensinine and four novel bisbenzyltetrahydroisoquinoline alkaloids named as 6-O-desmethylneferine, 2'-N-desmethylneferine, 2'-N-6-O-didesmethylneferine, and 6,13-O-didesmethylneferine. All metabolites were desmethyl or didesmethyl products of neferine. The possible metabolic pathways for neferine have been proposed. The results suggest that N-demethylation and O-demethylation are two important metabolic pathways of neferine in dog hepatic microsomal incubations. This is critical for screening and development of phenolic bisbenzyltetrahydroisoquinoline alkaloids with anti-HIV activities such as neferine and its analogues isoliensinine and liensinine.  相似文献   

8.
The metabolism of arbidol in humans was studied using liquid chromatography-electrospray ionization (ESI) ion trap mass spectrometry (ITMS) after an oral dose of 300-mg arbidol. A total of 17 metabolites were identified including the glucuronide arbidol and the glucuronide sulfinylarbidol as the major metabolites.Arbidol and its metabolites have some common fragmentation patterns as a result of a homolytic bond cleavage. This cleavage will form odd-electron ions with the loss of a radical. The arbidol fragmentation sequence is first to lose dimethylamine (45 Da), followed by the loss of acetaldehyde (44 Da), and then the phenylthio radical (109 Da). This fragmentation sequence is also observed from N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol. However, for sulfinylarbidol and N-demethylsulfinylarbidol, the fragmentation sequence is reversed so that the phenylsulfiny radical (125 Da) was lost first, followed by the loss of dimethylamine (45 Da), and then acetaldehyde (44 Da). The exact masses for arbidol and sulfinylarbidol fragment ions were determined by a quadrupole/time-of-flight mass spectrometer (Q-TOF MS).The phase II metabolites, such as sulfate and glucuronide conjugates of arbidol, N-demethylarbidol, sulfonylarbidol, and N-demethylsulfonylarbidol were identified by observing the neutral loss of 80 Da (SO(3)) or 176 Da (glucuronic acid) from the MS(2) spectra. The sulfate and glucuronide conjugates such as sulfinylarbidol and N-demethylsulfinylarbidol had an unusual fragmentation pattern, in which the phenylsulfinyl radical (125 Da) was lost before the loss of SO(3) group (80 Da) or glucuronic acid (176 Da) occurred.  相似文献   

9.
A novel prodrug [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime (DB289)] of the promising antimicrobial agent, 2,5-bis(4-amidinophenyl)furan (DB75), has excellent oral activity. It is currently undergoing phase II clinical evaluation as an orally administered drug candidate against African trypanosomiasis and Pneumocystis carinii pneumonia. The sequential product ion (MS(n)) fragmentations of DB289 and selected metabolites were characterized using ion trap mass spectrometry with electrospray ionization. An unusual homolytic bond cleavage, formation of an odd-electron ion from an even-electron ion with the loss of a radical, was commonly seen in the fragmentation patterns of DB289 and its metabolites. Both O-ethyl and N-methyl homologues of DB289 were utilized to confirm this fragmentation pathway. The labile hydrogen atoms in DB289 are readily exchanged with deuterium atoms in the solvent containing deuterium oxide (D2O) instead of water. The mass shift patterns displayed in the product ion spectra of DB289 in D2O proved useful in verifying the fragmentation pathway. Octadeuterated DB289 and DB75 (d-labeling on the diphenyl rings) showed unequivocally that the diphenylfuran moiety is not involved in the fragmentation. The fragmentation pathways uncovered in this work will facilitate structural characterization of all the metabolites produced in the metabolic activation of DB289.  相似文献   

10.
The fragmentation behavior of (+)-silybin (1) and (+)-deuterosilybin (2), as well as of their flavanone-3-ol-type building blocks, such as 3,5,7-trihydroxy-2-phenyl-4-chromanone (3) and 2-(1,4-benzodioxolanyl)-3,5,7-trihydroxy-4-chromanone (4), were investigated by atmospheric pressure chemical ionization quadropole time-of-flight tandem mass spectrometry in the positive ion mode (APCI(+)-QqTOF MS/MS). The product ion spectra of the protonated molecules of 1 revealed a rather complicated fragmentation pattern with product ions originating from consecutive and competitive loss of small molecules such as H2O, CO, CH2O, CH3OH and 2-methoxyphenol, along with the A+- and B+-type ions arising from the cleavage of the C-ring of the flavanone-3-ol moiety. The elucidation of the fragmentation behavior of 1 was facilitated by acquiring information on the fragmentation characteristics of the flavanone-3-ol moieties and 2. The capability of the accurate mass measurement on the quadrupole time-of-flight mass spectrometer allowed us to determine the elemental composition of each major product ion. Second-generation product ion spectra obtained by combination of in-source collision induced dissociation (CID) with selective CID (pseudo-MS(3)) was also helpful in elaborating the fragmentation pathways and mechanism. Based on the experimental results, a fragmentation mechanism as well as fragmentation pathways for 1 and its flavanone-3-ol building blocks (3, 4) are proposed and discussed.  相似文献   

11.
12.
The potent endectocide 23-(O-methyloximino)-F28249α and related compounds were identified and characterized by mass spectrometry. The fragmentation pathway of 23-(O-methyloximino)-F28249α was identified by its high-resolution mass spectrum and the electron impact unit mass spectra of its homologs. This fragmentation pathway is presented and discussed.  相似文献   

13.
The potent neurotoxins from cyanobacteria, anatoxin-a (AN), its methyl analogue, homoanatoxin-a (HMAN), and their degradation products, have been studied using nano-electrospray hybrid quadrupole time-of-flight mass spectrometry (QqTOF-MS). The anatoxin degradation products, which are readily produced in vivo by either reduction or epoxidation, were also examined in this study. The high mass accuracy QqTOF-MS data was used to confirm formula assignments for major product ions and quadrupole ion-trap (QIT)-MS was used to construct fragmentation pathways for anatoxins. Significant differences between these fragmentation pathways were observed. Comparisons between the spectra of compounds that differ in side-chain length (the AN and HMAN series) were used to identify ions that are characteristic of the homologues. The application to forensic samples in which the principal neurotoxin had undergone rapid biodegradation has been demonstrated and used to confirm anatoxin poisoning of dogs.  相似文献   

14.
A detailed multi-stage (MSn) fragmentation study of cyclophosphamide (CP), ifosfamide (IF) and their major metabolites, using an ion-trap mass spectrometer and a Q-TOF mass spectrometer, was performed with the aid of specifically deuterium-labeled analogs. The analytes showed good responses in positive-ion electrospray mass spectrometry as [MH]+ ions. Tandem mass spectra revealed a wealth of structurally specific ions, allowing characterization of the fragmentation pathways of these analytes. The major fragmentation pathways of the protonated CP and IF are elimination of ethylene from C5 and C6 of 1,3,2-oxazaphosphorine-2-oxide via a McLafferty rearrangement, and cleavage of the P-N bond. However, their activated 4-OOH and 4-OH metabolites primarily underwent hydrogen peroxide elimination and dehydration, respectively, followed by fragmentation pathways similar to those of CP and IF. These results should prove useful in structural elucidation of future analogs of CP and IF, and/or of their metabolites.  相似文献   

15.
The degradation and derivatization of hydroxyethyl starch to partially methylated alditol acetates (PMAAs) allows its detection by gas chromatography/mass spectrometry. The derivatization was performed by permethylation of the carbohydrate, hydrolysis of the permethylated polysaccharide, reduction of the resulting monosaccharides to alditoles and finally acetylation. A close similarity in the fragmentation of the PMAAs obtained was observed in both electron ionization (EI) and chemical ionization (CI) mass spectra owing to the comparable structures of the derivatives. CI measurements permitted the recognition of introduced hydroxyethyl groups in the glucose residues by detection of [M(+)+1]-60 signals. Investigations concerning the EI fragmentation schemes allowed secure determinations of monohydroxyethyl monosaccharides and differentiations between the possible positions (C-2, C-3 and C-6) of the substituted hydroxyethyl groups. Proposed generations of the main fragment ions are presented.  相似文献   

16.
Metabolite identification for the compounds that undergo multiple and sequential metabolism is still a great challenge. Echinacoside (ECH), a typical phenylethanoid glycoside, contains multiple unstable chemical bonds and high reactive functional groups which are susceptible to multiple pathways of degradation and metabolism, leading great difficulties for its metabolite identification. This study proposed a novel approach for rapidly identifying the complicated and unpredictable metabolites of ECH, based on the powerful liquid chromatography hybrid ion trap and time of flight mass spectrometry (LC/MS-IT-TOF) analysis. Four degradation products were rapidly identified via the “fragmentation-degradation” comparisons. Five phase I and phase II metabolites of the degradation products were rapidly characterized via the crossover mass differences comparisons of their quasi-molecular ions with the potential precursors. Four direct phase I and phase II metabolites of the parent compound were identified by the mass differences analysis of the molecular ions between metabolites and the parent compound. Multiple stages of fragmentation patterns were used to confirm the metabolites characterizations. This study provides a novel approach to characterizing the complicated metabolites, and would be widely applicable for the metabolite identification of natural products.  相似文献   

17.
Identification of drug metabolites by liquid chromatography/mass spectrometry (LC/MS) involves metabolite detection in biological matrixes and structural characterization based on product ion spectra. Traditionally, metabolite detection is accomplished primarily on the basis of predicted molecular masses or fragmentation patterns of metabolites using triple‐quadrupole and ion trap mass spectrometers. Recently, a novel mass defect filter (MDF) technique has been developed, which enables high‐resolution mass spectrometers to be utilized for detecting both predicted and unexpected drug metabolites based on narrow, well‐defined mass defect ranges for these metabolites. This is a new approach that is completely different from, but complementary to, traditional molecular mass‐ or MS/MS fragmentation‐based LC/MS approaches. This article reviews the mass defect patterns of various classes of drug metabolites and the basic principles of the MDF approach. Examples are given on the applications of the MDF technique to the detection of stable and chemically reactive metabolites in vitro and in vivo. Advantages, limitations, and future applications are also discussed on MDF and its combinations with other data mining techniques for the detection and identification of drug metabolites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A study of the fragmentation pathways of several classes of drugs of abuse (cannabinoids, ketamine, amphetamine and amphetamine-type stimulants (ATS), cocaine and opiates) and their related substances has been made. The knowledge of the fragmentation is highly useful for specific fragment selection or for recognition of related compounds when developing MS-based analytical methods for the trace-level determination of these compounds in complex matrices. In this work, accurate-mass spectra of selected compounds were obtained using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry, performing both MS/MS and MS(E) experiments. As regards fragmentation behavior, the mass spectra of both approaches were quite similar and were useful to study the fragmentation of the drugs investigated. Accurate-mass spectra of 37 drugs of abuse and related compounds, including metabolites and deuterated analogues, were studied in this work, and structures of fragment ions were proposed. The accurate-mass data obtained allowed to confirm structures and fragmentation pathways previously proposed based on nominal mass measurements, although new insights and structure proposals were achieved in some particular cases, especially for amphetamine and ATS, 11-nor-9-carboxy-Δ(9)-tetrahydrocannabinol (THC-COOH) and opiates.  相似文献   

19.
Purines and pyrimidines are of interest owing to their significance in processes in living organisms. Mass spectrometry is a promising analytical tool utilized in their analysis. Two atmospheric pressure ionization (API) methods (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)) in both negative and positive modes applied to selected purine and pyrimidine metabolites (markers of inherited metabolic disorders) were studied. APCI is less sensitive to alkali metal cations present in a sample and offers higher response than ESI for studied compounds. Both of the techniques afford quasi-molecular ions, but fragmentation also occurs to a certain extent. However, the application of collision-induced dissociation of quasi-molecular ions is essential to confirm a certain metabolite in a sample. Fragmentation of both positive and negative ions was evaluated using multi-stage mass spectrometric experiments. Typical neutral losses correspond to molecules NH(3), H(2)O, HCN, CO, H(2)NCN, HNCO and CO(2). The ion [NCO](-) arises in the negative mode. The cleavage of the glycosidic C-N bond is characteristic for relevant metabolites. Other neutral losses (CH(2)O, C(2)H(4)O(2) and C(3)H(6)O(3)) originate from fragmentation of the glycosidic part of the molecules. In addition to fragmentation, the formation of adducts of some ions with applied solvents (H(2)O, CH(3)OH) was observed. The composition of the solution infused into the ion source affects the appearance of the mass spectra. Tandem mass spectra allow one to distinguish compounds with the same molecular mass (uridine-pseudouridine and adenosine-2'-deoxyguanosine). Flow injection analysis APCI-MS/MS was tested on model samples of human urines corresponding to adenosine deaminase deficiency and xanthine oxidase deficiency. In both cases, the results showed potential diagnostic usefulness.  相似文献   

20.
Benzo[a]pyrene (BP) metabolites conjugated with glutathione, cysteine-glycine, cysteine, N-acetylcysteine, and sulfuric and glucuronic acids have been studied by microcolumn liquid chromatography-electrospray mass spectrometry with collision-induced dissociation (CID) on a hybrid double focusing magnetic sector-orthogonal time-of-flight tandem mass spectrometer equipped with a focal plane array detector. Negative-ion electrospray mass spectra of the conjugated BP metabolites showed strong [M – H]? ions. When the array detector was used, spectra were obtained from femtomoles of sample infused at mass resolutions of 5000 (full width at half maximum). Cone voltage fragmentation spectra show [M-H]? ions and fragment ions indicative of the BP moiety and/or the conjugating group. Linked scan CID spectra at constant B/E were found to contain structurally informative product ions from infusion of as little as 1 pmol of sample. CID spectra were also recorded by using the double focusing sectors for precursor ion selection and the orthogonal time-of-flight analyzer for product ion mass separation. The method was applied to the analysis of conjugated BP metabolites in the urine of germ-free rats given a single intraperitoneal dose of BP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号