首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通过采用传统电纺丝装置(接收板接地或连接负压电源)、逆向电场及非接触式电纺丝装置等4种不同的电纺丝装置,在相同电压、接收距离、纺针直径、温湿度条件下,对20%的聚乙烯醇溶液进行电纺丝实验,观察不同装置中制得的纤维的沉积形态与形貌.还采用ANSYS有限元模拟对电纺丝装置的场强分布进行分析,并引入电化学理论解释了采用不同电纺装置时离子浓度的不同对所得电纺纤维形貌的影响,分析了产生差异的原因.  相似文献   

2.
通过对聚(γ-苄基L-谷氨酸酯)(PBLG)的亲水改性制备了两亲性聚(γ-苄基L-谷氨酸酯-co-羟乙谷酰胺)无规共聚肽(PBHG)用于静电纺丝制备超细纤维.通过傅里叶变换红外光谱、核磁共振氢谱表征了聚合物结构.通过测定溶液表面张力、黏度、电导率及扫描电镜观察纤维形貌考察了不同溶剂及PBHG浓度对纺丝溶液性质及电纺纤维的影响.通过水浸实验及MTT法评价了电纺纤维膜的亲水性及细胞相容性.研究发现在三氯甲烷(TCM)和四氢呋喃(THF)中PBHG采取α-螺旋构象,刚性分子链自取向排列,可获得直径为微米或亚微米的电纺纤维.以TCM为溶剂时,因溶液表面张力大、导电率低导致纤维品质较差,而以THF为溶剂可获得表面光洁、尺寸均匀的电纺纤维.当溶剂为三氟乙酸(TFA)时,PBHG采取无规线团构象,柔性分子链彼此缠结,同时溶液表面张力小、黏度低、电导率高,可获得纳米电纺纤维.但因TFA挥发性相对较差,易造成纤维粘连.将TFA与TCM复配后作为溶剂可改善纤维粘连问题.与PBLG电纺纤维相比,改性后的PBHG电纺纤维的亲水性得到了改善,可在水中保持纤维骨架而无需交联,并表现出良好的细胞相容性,能促进细胞在电纺纤维膜上的增殖.  相似文献   

3.
研究了环境相对湿度、 温度、 溶液浓度、 纺丝电压和接收距离对聚甲醛(POM)电纺纤维表面孔形貌的影响. 结果表明, 空气中一定含量的水对孔的形成至关重要; 纺丝液浓度对孔的大小有影响. 并对POM 纤维表面成孔的可能机理进行了分析.  相似文献   

4.
聚乙烯醇明胶混合水溶液的静电纺丝   总被引:1,自引:0,他引:1  
将聚乙烯醇与明胶混合水溶液进行静电纺丝,制备了聚乙烯醇与明胶混合超细纤维及其电纺膜,研究了混合纺丝液的组成对纺丝液的粘度、表面张力和电导率的影响,观察了纤维的微观形貌,并对电纺膜进行了差示扫描量热测定.结果表明:当混合液中明胶含量小于20 9/6时,静电纺丝可以稳定进行.随着明胶含量由5%逐渐增加至25%,混合超细纤维的平均直径先是由260nm逐渐下降至207 nm而后又逐渐增加至320 nm.明胶的含量低于15%时,不影响其混合电纺膜中PVA的结晶.  相似文献   

5.
电纺聚乙烯醇超细纤维膜的性能研究   总被引:3,自引:0,他引:3  
由电纺制备聚乙烯醇(PVA)超细纤维膜,以扫描电镜观察纤维的微观形貌,用X射线衍射研究超细纤维膜的结晶行为,并测定了PVA超细纤维膜的力学性能和吸水性.结果表明,PVA超细纤维的平均直径为(184±26)nm,超细纤维中PVA的结晶度和晶体有序程度较浇铸膜低.超细纤维膜的拉伸强度、模量和断裂伸长率均较浇铸膜差,吸水率在300%以上,高于浇铸膜.  相似文献   

6.
钴卟啉功能化电纺纤维膜的制备及其苯胺检测应用研究   总被引:1,自引:0,他引:1  
以四苯基钴卟啉为识别分子,可溶性聚酰亚胺为高分子载体,采用静电纺丝技术制备一种负载钴卟啉的聚酰亚胺电纺纤维膜,用于对微量苯胺蒸气的快速检测.结果表明,钴卟啉基团的引入并没有使纺丝条件和过程发生很大的改变,依旧可以得到直径均一、形貌良好的电纺纤维.制备的钴卟啉功能化聚酰亚胺电纺纤维膜卟啉单元负载量高、分布均匀,保持了钴卟啉的基本光谱特性.当置于苯胺蒸气中时,电纺纤维膜中的钴卟啉可与苯胺分子轴向配位,形成有效的能量转移复合物,引起电纺纤维膜的紫外光谱发生改变.并且随着苯胺蒸气浓度的增加,紫外光谱呈现规律性变化,从而达到对苯胺蒸气检测的目的.进一步由紫外光谱计算得到其检测限为7.82 mg/m3.经过5次连续的苯胺蒸气作用—氮气吹扫过程后,电纺纤维膜的紫外吸收光谱可基本回复至原有状态,显示了较好的重现性和优异的可重复使用性.  相似文献   

7.
同轴电纺制备刚性多糖纳米纤维膜   总被引:1,自引:0,他引:1  
将壳聚糖、海藻酸钠或透明质酸配制成水溶液,聚氧化乙烯(PEO)溶解在二甲基甲酰胺(DMF)/H2O 混合溶剂中,以上述两溶液分别作为内、外纺丝液进行同轴电纺制备成纤维膜,进而利用适当溶剂除去 PEO 外壳,得到纯多糖纳米纤维膜.纤维结构通过 TEM、SEM 进行表征.结果表明:同轴电纺可一步制得外壳为 PEO、内核为刚性多糖的核壳纳米纤维,纤维外壳 PEO 组分可以用氯仿萃取除去;与单轴电纺法制得的刚性多糖纤维相比,同轴电纺可以保持最终纤维的结构完整性.  相似文献   

8.
以过硫酸钾(KPS)为引发剂, 采用双丙酮丙烯酰胺(DAA)对海藻酸钠(SA)进行改性, 制备了海藻酸钠-聚双丙酮丙烯酰胺两亲性共聚物(SA-PDAA). 将SA-PDAA与聚乙烯醇(PVA)复配, 并进行静电纺丝, 制得SA-PDAA/PVA电纺纳米纤维. 通过红外光谱、 差示扫描量热和荧光光谱表征了SA-PDAA的结构和性能, 通过黏度仪、 表面张力仪和电导率仪测试了SA-PDAA纺丝液的物理性能, 用扫描电子显微镜表征了SA-PDAA/PVA电纺纳米纤维的形貌, 考察了SA-PDAA/PVA电纺纳米纤维的释药性能. 结果表明, DAA接枝到SA分子链上, SA-PDAA的临界聚集浓度为0.072 g/L, SA-PDAA具有良好的两亲性, SA-PDAA/PVA电纺纳米纤维具有均一的形貌. 改性后的SA可以有效地减缓药物释放速度, 提高SA-PDAA/PVA电纺纳米纤维的缓释性能.  相似文献   

9.
壳聚糖/聚乙烯醇共混超细纤维的制备及紫外光交联研究   总被引:4,自引:0,他引:4  
用静电纺丝法制备壳聚糖/聚乙烯醇的共混超细纤维,采用扫描电镜考察了纺丝液浓度、共混物配比、喷丝口内径对纤维形貌的影响.此外,为减少壳聚糖/聚乙烯醇纤维膜的溶胀变形,在上述体系中加入可光交联的单体二缩三乙二醇双甲基丙烯酸酯(TEGDMA)、引发剂2-羟基-2-甲基-1苯基丙酮(1173),对电纺纤维进行紫外光交联.结果表明,当壳聚糖与聚乙烯醇质量比为8:2的共混体系中加入占混合溶液质量分数4%的TEGDMA、0.12%的1173作为交联剂时,所得的无纺布纤维直径比较均一,平均约为200 nm,经光交联处理后其耐水性能得到提高.  相似文献   

10.
为简单有效地制备高活性表面增强拉曼光谱(Surface-enhanced Raman Spectroscopy,SERS)基底。本文采用静电纺丝聚乙烯醇(PVA)/聚丙烯酸(PAA)纳米纤维为支撑材料,通过直接浸泡的方法,利用金纳米棒与电纺纤维之间的静电力,使纳米棒在纤维表面自组装,得到了性能优异的SERS基底。通过透射电子显微镜、扫描电子显微镜对金纳米棒以及不同状态下的电纺纤维的形貌进行表征,结果表明,金纳米棒均匀且密集地负载在纤维表面。通过设置不同的浸泡时间确定了金纳米棒组装平衡的时间为12 h,并通过调控纺丝时间和金纳米棒的浓度发现随着纺丝时间和金纳米棒浓度的增加,复合纤维膜SERS增强效果随之提升。该复合纤维膜具有优异的SERS均匀性,并且能够检测到浓度低至10~(-10)mol/L的4-氨基苯硫酚的存在。  相似文献   

11.
A poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibrous surface with various bead-on-string structures was fabricated by electrospinning. PHBV was electrospun at various concentrations and then CF4 plasma treatment was employed to further improve the hydrophobicity of the PHBV fiber surfaces. The surface morphology of the electrospun PHBV mats was observed by scanning electron microscopy (SEM). The surface properties were characterized by water contact angle (WCA) measurements and X-ray photoelectron spectroscopy (XPS). The surface morphology of the electrospun PHBV fibrous mats with the bead-son-string structure varied with the solution concentration. The WCA of all of the electrospun PHBV mats was higher than that of the PHBV film. In particular, a very rough fiber surface including porous beads was observed when PHBV was electrospun from the solution with a concentration of 26 wt%. Also, its WCA further increased from 141 degrees to 158 degrees after CF(4) plasma treatment for 150 s. PHBV can be rendered superhydrophobic by controlling the surface morphology and surface energy, which can be achieved by adjusting the electrospinning and plasma treatment conditions.  相似文献   

12.
利用电纺丝技术制备了二氧化碳环氧丙烷共聚物超细纤维,研究了喷丝口电势、纺丝距离、浓度、溶剂等因素对纤维形貌、直径及均一性的影响.实验结果表明,利用电纺丝法可以制备直径在小于200nm到7μm二氧化碳环氧丙烷共聚物纤维;喷丝口电势和浓度对于共聚物电纺丝纤维是否形成串珠结构有重要影响;电势、距离和纺丝液浓度都对纤维直径及分散系数有较大影响,在一定范围内,随着喷丝口电势增加,纤维平均直径变大而分散系数变小;纺丝距离增大使得纤维平均直径变小,分散系数变大;浓度的增大使得纤维平均直径变大,分散系数变小;不同溶剂配制的溶液体系制备的电纺丝纤维形貌有很大差异,在二氯甲烷和丁酮的体系中,分别观察到了两组较为集中的直径分布.  相似文献   

13.
The feasibility of using phosphate buffer saline (PBS)/ethanol mixtures as a benign solvent to electrospin three types of gelatin was studied. Gelatins with different chemical properties, such as Bloom, were selected and the effect of the gelatin nature and its concentration on the electrospinnability of the dope solution and on the fiber diameter of the electrospun mats were studied. Viscosity of the gelatin solution, which follows a power law relationship with the gelatin concentration, was found to significantly influence the morphology of the mats and the fiber diameter. It was demonstrated that the PBS/ethanol solvent interacted with the gelatins as a good solvent with a Flory exponent of 0.65. In addition, the effect of the solvent composition on the fiber formation process was evaluated corroborating that the ionic strength of the medium and the PBS/ethanol ratio significantly affected the morphology and the diameter of the electrospun fibers. Chemical structure and thermal stability of the electrospun gelatin mats were characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). Finally, cytotoxicity of the electrospun mats was analyzed by the Alamar Blue assay, using human foreskin fibroblasts (BJ‐5ta), resulting in a high cell viability (80–90%) regardless the type of gelatin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Electrospinning of a previously synthesized biostable polyisobutylene (PIB)-based thermoplastic polyurethanes (TPU) have been performed as materials with potential applications as vascular grafts. Electrospun mats were generated with fiber diameters in the submicron to 2 μm range as observed using scanning electron microscopy. Porosity of electrospun TPU fiber mats was investigated using Hg intrusion porosimetry. Fiber mats were found to have a distribution of pore sizes between 100 nm and 100 μm, with overall porosity between 50 and 70%. Thermal analysis of electrospun mats showed orientation of the TPU chains compared to the bulk as-synthesized material. Tensile failure properties were characterized, showing ultimate tensile strength of 1.6–6.5 MPa and ultimate elongation of ∼300–100% with TPUs of increasing hardness from Shore 60A to 100A. Strain-recovery experiments showed good recovery of tensile strain at significant stresses. The previously demonstrated biostability of these PIB-based TPUs, together with the excellent reported mechanical properties, indicates great promise for these materials as biostable vascular grafts. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

15.
In this work, we evaluate the physical properties of nylon 6 nonwoven mats produced from solutions with formic acid. Nonwoven electrospun mats from various solutions with different concentration are examined regarding their morphology, pore size, surface area, and gas transport properties. Each nonwoven mat with average fiber diameters from 90 to 500 nm was prepared under controlled electrospinning process parameters. From the results, it was observed that the fiber diameter was strongly affected by the polymer concentration (polymer viscosity). In additional the results showed that the pore size, Brunauer-Emmett-Teller (BET) surface area, and gas transport property of electrospun nylon 6 nonwoven mats were affected by the fiber diameter.  相似文献   

16.
We evaluated the effects of the solvent composition with respect to the solution concentration, applied electric field, and tip‐to‐collector distance on the morphology of electrospun poly(vinyl chloride) (PVC) fibers. The solvent volume ratio was strongly correlated with the diameter of the electrospun fibers with respect to the other processing parameters. Electrospun PVC fibers dissolved in tetrahydrofuran (THF) had diameters ranging from 500 nm to 6 μm; those dissolved in N,N‐dimethylformamide (DMF) had an average diameter of 200 nm. The diameters of the electrospun fibers were obtained from narrow to broad distributions with the solvent composition. Also, the diameters of fibers electrospun from a mixed solvent of THF and DMF were less than 1 μm. The mechanical properties of electrospun PVC nonwoven mats depended on the fiber orientation and linear velocity of the drum surface. With increasing linear velocity of the drum surface, electrospun PVC fibers were arranged toward the machine direction, and the dimensions of the spiral path were shorter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2259–2268, 2002  相似文献   

17.
This study describes the preparation and characterization of nanofibrous mats obtained by electrospinning poly(ethylene terephthalate) (PET) solutions in trifluoroacetic acid/dichloromethane (TFA/DCM). Special attention was paid to the effect of polymer concentration and solvent properties on the morphology, structure, and mechanical and thermal properties of the electrospun nonwovens. The results show that the spinnable concentration of PET solution in TFA/DCM solvents is above 10 wt %. Mats have nanofibrous morphology with fibers having an average diameter in the range of 200–700 nm (depending on polymer concentration and solvent composition) and an interconnected pore structure. Higher solution concentration favors the formation of uniform fibers without beads and with higher diameter. Morphology and fiber assembly changed with the solvent properties. Solvent mixtures rich in TFA, i.e., those with higher dielectric constant and lower surface tension, originated fibers with small diameter. However, due to the lower volatility, those solvent mixtures also produced more branched and crosslinking fibers, with less morphologic uniformity. Mechanical properties (Young's modulus, ultimate strength, and elongation at break) and thermal properties (glass transition, crystallization, and melting) have been studied for the PET electrospun nanomats and compared with those of the original polymer. Solvent effect on fiber crystallinity was not significant, but a complex effect was observed on the mechanical properties of the electrospun mats, as a consequence of the different structural organization of the fibers within the mat network. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 460–471, 2008  相似文献   

18.
Ultra‐fine poly(vinyl alcohol) (PVA) electrospun fiber mats containing carbendazim were successfully fabricated by electrospinning from the neat PVA solution containing carbendazim in various amounts based on the weight of PVA. The morphological appearance of both the neat and the carbendazim‐loaded electrospun PVA fibers were smooth and the incorporation of carbendazim in the neat PVA solution did not affect the morphology of the resulting fibers. The average diameters of the neat and the carbendazim‐loaded electrospun PVA fibers ranged between 155 and 160 nm. The chemical integrity of the as‐loaded carbendazim in the carbendazim‐loaded electrospun PVA fiber mats was intact as verified by the 1H‐nuclear magnetic resonance spectroscopy. Thermal properties of the carbendazim‐loaded electrospun PVA fiber mats were analyzed by differential scanning calorimetry and thermogravimetric analysis. The release characteristics of the carbendazim‐loaded electrospun PVA mats were investigated by the total immersion method in distilled water at 30°C. The carbendazim‐loaded electrospun PVA mats exhibited greater amount of carbendazim released than the carbendazim‐loaded as‐cast films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
This paper outlines the shrinkage of electrospun polyvinylpyrrolidone (PVP) fiber mats during thermal treatment. The thermal behavior and phase changes within the fibers were investigated by DSC and TGA/DTA. Five precursors with different PVP loading in ethanol were electrospun. The mats shrinkage as function of temperature was measured in the RT–200 °C range. Shrinkage rate drastically increased above the polymer glass transition point, Tg (150–180 °C), due to increase in polymer chain mobility. Mats shrinkage at 200 °C as function of PVP concentration showed a minimum at ∼10%wt. Below 10% PVP the mats morphology is non‐uniform, consisting of beads and fibers. Above 10% PVP, only flat and uniform fibers were observed. This paper outlines the dominant mechanism governing the mats shrinkage during heating. In addition, the effect of PVP concentration on the expansion of fibers diameter was investigated and found to be consistent with the linear shrinkage observing a minimum at ∼10% PVP. The effect of applied voltage on mat shrinkage was investigated, and showed a minimum at 12 kV. Understanding the interplay between fibers morphology and thermal shrinkage allows precursor composition and system optimization needed for minimizing shrinkage negative effects on the structure and properties of electrospun fiber mats. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 248–254  相似文献   

20.
Submicron poly(vinyl alcohol) (PVA) fiber mats were prepared by electrospinning of aqueous PVA solutions in 6-8% concentration. Fiber morphology was observed under a scanning electron microscope and effects of instrument parameters including electric voltage, tip-target distance, flow rate and solution parameters such as concentration on the morphology of electrospun PVA fibers were evaluated. Results showed that, when PVA with higher degree of hydrolysis (DH) of 98% was used, tip-target distance exhibited no significant effect on the fiber morphology, however the morphological structure can be slightly changed by changing the solution flow rate. At high voltages above 10 kV, electrospun PVA fibers exhibited a broad diameter distribution. With increasing solution concentration, the morphology was changed from beaded fiber to uniform fiber and the average fiber diameter could be increased from 87 ± 14 nm to 246 ± 50 nm. It was also found that additions of sodium chloride and ethanol had significant effects on the fiber diameter and the morphology of electrospun PVA fibers because of the different solution conductivity, surface tension and viscosity. When the DH value of PVA was increased from 80% to 99%, the morphology electrospun PVA fibers was changed from ribbon-like fibers to uniform fibers and then to beaded fibers. The addition of aspirin and bovine serum albumin also resulted in the appearance of beads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号