首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reduction of carbon dioxide (CO2) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO2 reduction reaction (CO2RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO2RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO)2CO3 nanostructures. The as-prepared material exhibits high activity and selectivity for CO2RR to formate, with nearly 94% faradaic efficiency at −1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from −0.83 to −1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO2RR/methanol oxidation reaction (CO2RR/MOR) electrolytic system for overall CO2 splitting was constructed, evidencing the feasibility of its practical implementation.  相似文献   

2.
Balancing the activation of H2O is crucial for highly selective CO2 electroreduction (CO2RR), as the protonation steps of CO2RR require fast H2O dissociation kinetics, while suppressing hydrogen evolution (HER) demands slow H2O reduction. We herein proposed one molecular engineering strategy to regulate the H2O activation using aprotic organic small molecules with high Gutmann donor number as a solvation shell regulator. These organic molecules occupy the first solvation shell of K+ and accumulate in the electrical double layer, decreasing the H2O density at the interface and the relative content of proton suppliers (free and coordinated H2O), suppressing the HER. The adsorbed H2O was stabilized via the second sphere effect and its dissociation was promoted by weakening the O−H bond, which accelerates the subsequent *CO2 protonation kinetics and reduces the energy barrier. In the model electrolyte containing 5 M dimethyl sulfoxide (DMSO) as an additive (KCl-DMSO-5), the highest CO selectivity over Ag foil increased to 99.2 %, with FECO higher than 90.0 % within −0.75 to −1.15 V (vs. RHE). This molecular engineering strategy for cation solvation shell can be extended to other metal electrodes, such as Zn and Sn, and organic molecules like N,N-dimethylformamide.  相似文献   

3.
Heterostructured oxides with versatile active sites, as a class of efficient catalysts for CO2 electrochemical reduction (CO2ER), are prone to undergo structure reconstruction under working conditions, thus bringing challenges to understanding the reaction mechanism and rationally designing catalysts. Herein, we for the first time elucidate the structural reconstruction of CuO/SnO2 under electrochemical potentials and reveal the intrinsic relationship between CO2ER product selectivity and the in situ evolved heterostructures. At −0.85 VRHE, the CuO/SnO2 evolves to Cu2O/SnO2 with high selectivity to HCOOH (Faradaic efficiency of 54.81 %). Mostly interestingly, it is reconstructed to Cu/SnO2-x at −1.05 VRHE with significantly improved Faradaic efficiency to ethanol of 39.8 %. In situ Raman spectra and density functional theory (DFT) calculations reveal that the synergetic absorption of *COOH and *CHOCO intermediates at the interface of Cu/SnO2-x favors the formation of *CO and decreases the energy barrier of C−C coupling, leading to high selectivity to ethanol.  相似文献   

4.
Morphology-controlled electrocatalysts with the ability of CO2adsorption/activation, mass transfer, high stability and porosity are much desired in electrochemical CO2reduction reaction(CO2RR). Here, three kinds of multi-dimensional nanostructures(i.e., hollow sphere, nanosheets and nanofibers) have been successfully produced through the modulation of porphyrin-based covalent organic frameworks(COFs)with various modulators. The obtained nanostructures with high-s...  相似文献   

5.
We report a straightforward strategy to design efficient N doped porous carbon (NPC) electrocatalyst that has a high concentration of easily accessible active sites for the CO2 reduction reaction (CO2RR). The NPC with large amounts of active N (pyridinic and graphitic N) and highly porous structure is prepared by using an oxygen-rich metal–organic framework (Zn-MOF-74) precursor. The amount of active N species can be tuned by optimizing the calcination temperature and time. Owing to the large pore sizes, the active sites are well exposed to electrolyte for CO2RR. The NPC exhibits superior CO2RR activity with a small onset potential of −0.35 V and a high faradaic efficiency (FE) of 98.4 % towards CO at −0.55 V vs. RHE, one of the highest values among NPC-based CO2RR electrocatalysts. This work advances an effective and facile way towards highly active and cost-effective alternatives to noble-metal CO2RR electrocatalysts for practical applications.  相似文献   

6.
Silver (Ag)-based materials are considered to be promising materials for electrochemical reduction of CO2 to produce CO, but the selectivity and efficiency of traditional polycrystalline Ag materials are insufficient; there still exists a great challenge to explore novel modified Ag based materials. Herein, a nanocomposite of Ag and SnO2 (Ag/SnO2) for efficient reduction of CO2 to CO is reported. HRTEM and XRD patterns clearly demonstrated the lattice destruction of Ag and the amorphous SnO2 in the Ag/SnO2 nanocomposite. Electrochemical tests indicated the nanocomposite containing 15% SnO2 possesses highest catalytic selectivity featured by a CO faradaic efficiency (FE) of 99.2% at −0.9 V versus reversible hydrogen electrode (vs RHE) and FE>90% for the CO product at a wide potential range from −0.8 V to −1.4 V vs RHE. Experimental characterization and analysis showed that the high catalytic performance is attributed to not only the branched morphology of Ag/SnO2 nanocomposites (NCs), which endows the maximum exposure of active sites, but also the special adsorption capacity of abundant defect sites in the crystal for *COOH (the key intermediate of CO formation), which improves the intrinsic activity of the catalyst. But equally important, the existed SnO2 also plays an important role in inhibiting hydrogen evolution reaction (HER) and anchoring defect sites. This work demonstrates the use of crystal defect engineering and synergy in composite to improve the efficiency of electrocatalytic CO2 reduction reaction (CO2RR).  相似文献   

7.
Integration of CO2 capture capability from simulated flue gas and electrochemical CO2 reduction reaction (eCO2RR) active sites into a catalyst is a promising cost-effective strategy for carbon neutrality, but is of great difficulty. Herein, combining the mixed gas breakthrough experiments and eCO2RR tests, we showed that an Ag12 cluster-based metal–organic framework ( 1-NH2 , aka Ag12bpy-NH2 ), simultaneously possessing CO2 capture sites as “CO2 relays” and eCO2RR active sites, can not only utilize its micropores to efficiently capture CO2 from simulated flue gas (CO2 : N2=15 : 85, at 298 K), but also catalyze eCO2RR of the adsorbed CO2 into CO with an ultra-high CO2 conversion of 60 %. More importantly, its eCO2RR performance (a Faradaic efficiency (CO) of 96 % with a commercial current density of 120 mA cm−2 at a very low cell voltage of −2.3 V for 300 hours and the full-cell energy conversion efficiency of 56 %) under simulated flue gas atmosphere is close to that under 100 % CO2 atmosphere, and higher than those of all reported catalysts at higher potentials under 100 % CO2 atmosphere. This work bridges the gap between CO2 enrichment/capture and eCO2RR.  相似文献   

8.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

9.
Electrocatalytic CO2-to-syngas (gaseous mixture of CO and H2) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2-to-syngas at −0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (−0.7 V to −1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.  相似文献   

10.
Zeolitic Imidazolate Frameworks (ZIFs) are considered as a novel porous material combining high stability in inorganic zeolites with high porosity and organic functionality of MOFs. The cage-like structure selectively and efficiently traps CO2, which is an indispensable and critical step for Electrocatalytic CO2 Reduction Reaction (CO2RR). In this work, ultrasmall ZIF-8 nanomaterials are synthesized by tuning the molar ratio of the feedstock and used as electrocatalysts for the selective reduction of CO2 to CO. The catalytic activity of the ultra-small size ZIF-8 material for the electrocatalytic reduction of CO2 can reach satisfactory results with a Faraday efficiency of 91 % for CO and a stability of 12.5 h at a high applied potential of −1.8 V vs. RHE. The investigation can provide a new idea to explore for the design and improvement of catalysts for CO2RR.  相似文献   

11.
Single-atom catalysts exhibit superior CO2-to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe−P atom paired catalyst onto nitrogen doped graphitic layer (Fe1/PNG) to accelerate PCET step. Fe1/PNG delivers an industrial CO current of 1 A with FECO over 90 % at 2.5 V in a membrane-electrode assembly, overperforming the CO current of Fe1/NG by more than 300 %. We also decrypted the synergistic effects of the P atom in the Fe−P atom pair using operando techniques and density functional theory, revealing that the P atom provides additional adsorption sites for accelerating water dissociation, boosting the hydrogenation of CO2, and enhancing the activity of CO2 reduction. This atom-pair catalytic strategy can modulate multiple reactants and intermediates to break through the inherent limitations of single-atom catalysts.  相似文献   

12.
We report the unprecedented electrocatalytic activity of a series of molecular nickel thiolate complexes ( 1 – 5 ) in reducing CO2 to C1–3 hydrocarbons on carbon paper in pH-neutral aqueous solutions. Ni(mpo)2 ( 3 , mpo=2-mercaptopyridyl-N-oxide), Ni(pyS)3 ( 4 , pyS=2-mercaptopyridine), and Ni(mp)2 ( 5 , mp=2-mercaptophenolate) were found to generate C3 products from CO2 for the first time in molecular complex. Compound 5 exhibits Faradaic efficiencies (FEs) of 10.6 %, 7.2 %, 8.2 % for C1, C2, C3 hydrocarbons respectively at −1.0 V versus the reversible hydrogen electrode. Addition of CO to the system significantly promotes the FEC1–C3 to 41.1 %, suggesting that a key Ni−CO intermediate is associated with catalysis. A variety of spectroscopies have been performed to show that the structures of nickel complexes remain intact during CO2 reduction.  相似文献   

13.
Electrocatalytic CO2 reduction reaction (CO2RR) to multi-carbon products (C2+) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C−C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) – thus breaking the K+ solubility limit (3.5 M) – which enables a highly efficient CO2RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+) can be achieved at 1400 mA.cm−2, simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.  相似文献   

14.
Research on the photoreduction of CO2 often has been dominated by the use of sacrificial reducing agents. A pathway that avoids this problem would be the development of photocathodes for CO2 reduction that could then be coupled to a photoanodic oxygen evolution reaction. Here, we present the use of copper-substituted graphitic carbon nitride (Cu−CN) on a fluorinated tin oxide (FTO) electrode for the photoelectrochemical two-electron reduction of CO2 to CO as a major product (>95 %) and formic acid (<5 %). The results show that at a potential of −2.5 V versus Fc\Fc+ the CO2 reduction activity of Cu−CN on FTO electrode improves by 25 % upon illumination by visible light with a faradaic efficiency of nearly 100 %. Independently, X-ray photoelectron spectroscopy conclusively shows a pronounced increase in the electrical conductivity of the Cu−CN upon white light illumination under vacuum and a contactless measuring configuration. This photo-assisted charge mobility is shown to play a key role in the increased reactivity and faradaic efficiency for the reduction of CO2.  相似文献   

15.
Despite the intriguing potential shown by Sn-based perovskite oxides in CO2 electroreduction (CO2RR), the rational optimization of their CO2RR properties is still lacking. Here we report an effective strategy to promote CO2-to-HCOOH conversion of Sn-based perovskite oxides by A-site-radius-controlled Sn−O bond lengths. For the proof-of-concept examples of Ba1−xSrxSnO3, as the A-site cation average radii decrease from 1.61 to 1.44 Å, their Sn−O bonds are precisely shortened from 2.06 to 2.02 Å. Our CO2RR measurements show that the activity and selectivity of these samples for HCOOH production exhibit volcano-type trends with the Sn−O bond lengths. Among these samples, the Ba0.5Sr0.5SnO3 features the optimal activity (753.6 mA ⋅ cm−2) and selectivity (90.9 %) for HCOOH, better than those of the reported Sn-based oxides. Such optimized CO2RR properties could be attributed to favorable merits conferred by the precisely controlled Sn−O bond lengths, e.g., the regulated band center, modulated adsorption/activation of intermediates, and reduced energy barrier for *OCHO formation. This work brings a new avenue for rational design of advanced Sn-based perovskite oxides toward CO2RR.  相似文献   

16.
Electrochemical conversion of CO2 to highly valuable ethanol has been considered a intriguring strategy for carbon neutruality. However, the slow kinetics of coupling carbon-carbon (C−C) bonds, especially the low selectivity ethanol than ethylene in neutral conditions, is a significant challenge. Herein, the asymmetrical refinement structure with enhanced charge polarization is built in the vertically oriented bimetallic organic frameworks (NiCu-MOF) nanorod array with encapsulated Cu2O (Cu2O@MOF/CF), which can induce an intensive internal electric field to increase the C−C coupling for producing ethanol in neutral electrolyte. Particularly, when directly employed Cu2O@MOF/CF as the self-supporting electrode, the ethanol faradaic efficiency (FEethanol) could reach maximum 44.3 % with an energy efficiency of 27 % at a low working-potential of −0.615 V versus the reversible hydrogen electrode (vs. RHE) using CO2-saturated 0.5 M KHCO3 as the electrolyte. Experimental and theoretical studies suggest that the polarization of atomically localized electric fields derived from the asymmetric electron distribution can tune the moderate adsorption of *CO to assist the C−C coupling and reduce the formation energy of H2CCHO*-to-*OCHCH3 for the generation of ethanol. Our research offers a reference for the design of highly active and selective electrocatalysts for reducing CO2 to multicarbon chemicals.  相似文献   

17.
Tin disulfide (SnS2) is a promising candidate for electrosynthesis of CO2-to-formate while the low activity and selectivity remain a great challenge. Herein, we report the potentiostatic and pulsed potential CO2RR performance of SnS2 nanosheets (NSs) with tunable S-vacancy and exposure of Sn-atoms or S-atoms prepared controllably by calcination of SnS2 at different temperatures under the H2/Ar atmosphere. The catalytic activity of S-vacancy SnS2 (Vs-SnS2) is improved 1.8 times, but it exhibits an exclusive hydrogen evolution with about 100 % FE under all potentials investigated in the static conditions. The theoretical calculations reveal that the adsorption of *H on the Vs-SnS2 surface is energetically more favorable than the carbonaceous intermediates, resulting in active site coverage that hinders the carbon intermediates from being adsorbed. Fortunately, the main product can be switched from hydrogen to formate by applying pulsed potential electrolysis benefiting from in situ formed partially oxidized SnS2−x with the oxide phase selective to formate and the S-vacancy to hydrogen. This work highlights not only the Vs-SnS2 NSs lead to exclusively H2 formation, but also provides insights into the systematic design of highly selective CO2 reduction catalysts reconstructed by pulsed potential electrolysis.  相似文献   

18.
Metal halide perovskites, primarily used as optoelectronic devices, have not been applied for electrochemical conversion due to their insufficient stability in moisture. Herein, two bismuth-based perovskites are introduced as novel electrocatalysts to convert CO2 into HCOOH in aqueous acidic media (pH 2.5), exhibiting a high Faradaic efficiency for HCOOH of >80 % in a wide potential range from −0.75 to −1.25 V. Their structural evolution against water was dynamically monitored by in situ spectra. Theoretical calculations further reveal that the formation of intermediate OCHO* on bismuth sites of Cs3Bi2Br9(111) play a pivotal role toward HCOOH production, which has a lower energy barrier than that on Cs2AgBiBr6(001) surfaces. Significantly, CO2 reacts with protons instead of water which can enhance CO2 reduction rate and suppress hydrogen evolution by avoiding carbonate formation in acidic electrolytes. This work paves the way for the extensive investigation of halide perovskites in aqueous systems.  相似文献   

19.
Metal-organic framework catalysts bring new opportunities for CO2 electrocatalysis. Herein, we first conduct density-functional theory calculations and predict that Co-based porphyrin porous organic layers (Co-PPOLs) exhibit good activity for CO2 conversion because of the low *CO adsorption energy at Co-N4 sites, which facilitates *CO desorption and CO formation. Then, we prepare two-dimensional Co-PPOLs with exclusive Co-N4 sites through a facile surfactant-assisted bottom-up method. The ultrathin feature ensures the exposure of catalytic centers. Together with large specific area, high electrical conductivity and CO2 adsorption capability, Co-PPOLs achieve a peak faradaic efficiency for CO production (FECO=94.2 %) at a moderate potential in CO2 electroreduction, accompanied with good stability. Moreover, Co-PPOLs reach an industrial-level current above 200 mA in a membrane electrode assembly reactor, and maintain near-unity CO selectivity (FECO>90 %) over 20 h in CO2 electrolysis.  相似文献   

20.
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N−Cu1−S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号