首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Precise regulation of protein activity and localization in cancer cells is crucial to dissect the function of the protein-involved cellular network in tumorigenesis, but there is a lack of suitable methodology. Here we report the design of enzyme-operated spherical nucleic acids (E-SNAs) for manipulation of the nucleocytoplasmic translocation of proteins with cancer-cell selectivity. The E-SNAs are constructed by programmable engineering of aptamer-based modules bearing enzyme-responsive units in predesigned sites and further combination with SNA nanotechnology. We demonstrate that E-SNAs are able to regulate cytoplasmic-to-nuclear shuttling of RelA protein efficiently and specifically in tumor cells, while they remain inactive in normal cells due to insufficient enzyme expression. We further confirmed the generality of this strategy by investigating the enzyme-modulated inhibition/activation of thrombin activity by varying the aptamer-based design.  相似文献   

2.
In vitro selection is a method that allows the simultaneous screening of very large numbers of nucleic acid molecules for a wide range of properties from binding characteristics to catalytic properties; moreover, the isolation of the very rare functional molecules becomes possible. Binding sites between proteins and nucleic acids, for example, have been evaluated by this methodology in order to gain information about protein/nucleic acid interactions. Structure and function of catalytic RNA (“ribozymes”) has been studied by in vitro selection and has led to new ribozymes with improved catalytic function. Substrate specificity of catalytic RNA has been changed and has led to a ribozyme that cleaves DNA. Other applications include the isolation of nucleic acids that bind specifically to small organic molecules and of RNA molecules that form triple helices with double-stranded DNA. In this article we discuss the background, design, and results of in vitro genetic experiments, which bridge biochemical/molecular biological and organic chemical approaches to molecular recognition.  相似文献   

3.
《Analytical letters》2012,45(10):1705-1717
Abstract

The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/ lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of pH 8.0–8.4 (controlled by NH3-NH4Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for yeast RNA (when excited at 267.0 nm) and emits at 483.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4–3.6 μg˙ml?1 for calf thymus DNA, 0.4–4.0 μg-ml?1 for fish sperm DNA and 0.4–4.0 μg˙ml?1 for yeast RNA, respectively. The limits of determination (3σ) were 0.076 μg˙ml?1 for calf thymus DNA, 0.068 μg˙ml?1 for fish sperm DNA and 0.329 μg˙ml?1 for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  相似文献   

4.
基于酶催化反应的核酸定量新方法   总被引:1,自引:0,他引:1  
近年来 ,将染料自缔合或诱导缔合用于核酸定量测定备受关注 [1~ 3 ] .但是将酶与染料的缔合用于核酸定量测定尚未见报道 .氯化血红素 (hemin)可作为辣根过氧化物酶 (HRP)的模拟酶 ,能催化 H2 O2氧化对 -羟基苯乙酸 (p- HPA)生成荧光产物——联二对 -羟基苯乙酸的反应 [4 ,5] .由于 hemin在碱性介质中是阴离子化合物 ,能与阳离子化合物如阿尔新蓝 (Alcian Blue 8GX)发生缔合作用 ,从而使自身的催化性质被抑制 .当加入带负电荷的脱氧核糖核酸 (DNA)时 ,由于阿尔新蓝与 DNA的强烈作用使hemin与阿尔新蓝的缔合物被破坏 ,hemin的催化活…  相似文献   

5.
水溶性游离碱阳离子卟啉与核酸作用的光谱研究   总被引:27,自引:1,他引:27  
研究了meso-四(对-三甲基氨基苯基)卟啉(TAPP)和meso-四(对-甲基吡啶基)卟啉(TMpyP-4)与核酸作用的电子吸收光谱、荧光光谱和共振光散射光谱的特性,电子吸收和荧光光谱研究表明,这两个水溶性阳离子卟啉与核酸的摩尔比(R)大于0.25时,核酸对卟啉的Soret带有减色效应和荧光猝灭效应;当R〈0.25时,核酸与卟啉作用形成新的荧光复合物,共振光散射光谱研究表明,核酸使TAPP的共振  相似文献   

6.
罗丹明6G与核酸作用的共振光散射光谱及其分析应用   总被引:6,自引:0,他引:6  
研究了罗丹明6G(Rh6G)与核酸(ctDNA和yRNA)作用的共振光散光谱(RLS)特征,基于RLS的增强,建立了一种测定核酸的新方法,考察了各种影响因素,在优化条件下确定了RLS强度与ctDNA和yRNA浓度之间的关系,相应的线性范围分别为0.05-37.0μg.mL^-1、0.1-10.0μg.mL^-1,检出限分别为3.0ng.mL^-1和9.5ng.mL^-1。四种合成样品五次平行测定结果的相对标准偏差(RSD)范围为2.0%-3.0%。  相似文献   

7.
研究了核苷酸、聚核苷酸和核酸对Tb3+-钛铁试剂(TR)络合物的荧光碎灭机理,认为荧光猝灭过程是核苷酸、聚核苷酸和核酸分子中的磷酸基组分与TR竞争Tb3+离子,生成实验条件下无荧光的二元络合物的静态猝灭过程;用Tb3+-TR络合物荧光探针研究DNA嵌入剂和金属离子与DNA相互作用的实验结果说明这一机理是合理的.  相似文献   

8.
Fungal–bacterial co-culturing is a potential technique for the production of secondary metabolites with antibacterial activity. Twenty-nine fungal species were screened in a co-culture with carbapenem-resistant Klebsiella pneumoniae at different temperatures. A temperature of 37 ° showed inhibition of bacterial growth. Antimicrobial susceptibility testing for K. pneumoniae was conducted to compare antibiotic resistance patterns before and after the co-culture. Genotypic comparison of the K. pneumonia was performed using next generation sequencing (NGS). It was shown that two out of five K. pneumoniae, with sequence type ST 101 isolates, lost bla-OXA48, bla-CTX-M-14, tir, strA and strB genes after the co-culture with Scopulariopsis brevicaulis fungus. The other three isolates (ST 383 and 147) were inhibited in the co-culture but did not show any changes in resistance. The total ethyl acetate extract of the fungal–bacterial co-culture was tested against K. pneumoniae using a disc diffusion method. The concentration of the crude extract was 0.97 mg/µL which resulted in total inhibition of the bacteria. Using chromatographic techniques, the purified compounds were identified as 11-octadecenoic acid, 2,4-Di-tert-butylphenol, 2,3-Butanediol and 9-octadecenamide. These were tested against K. pneumoniae using the well diffusion method at a concentration of 85 µg/µL which resulted in total inhibition of bacteria. The co-culture results indicated that bacteria under chemical stress showed variable responses and induced fungal secondary metabolites with antibacterial activities.  相似文献   

9.
The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy.  相似文献   

10.
Background: The [99mTc][Tc(N)(PNP)] system, where PNP is a bisphosphinoamine, is an interesting platform for the development of tumor ‘receptor-specific’ agents. Here, we compared the reactivity and impact of three [Tc(N)(PNP)] frameworks on the stability, receptor targeting properties, biodistribution, and metabolism of the corresponding [99mTc][Tc(N)(PNP)]-tagged cRGDfK peptide to determine the best performing agent and to select the framework useful for the preparation of [99mTc][Tc(N)(PNP)]-housing molecular targeting agents. Methods: cRGDfK pentapeptide was conjugated to Cys and labeled with each [Tc(N)(PNP)] framework. Radioconjugates were assessed for their lipophilicity, stability, in vitro and in vivo targeting properties, and performance. Results: All compounds were equally synthetically accessible and easy to purify (RCY ≥ 95%). The main influences of the synthon on the targeting peptide were observed in in vitro cell binding and in vivo. Conclusions: The variation in the substituents on the phosphorus atoms of the PNP enables a fine tuning of the biological features of the radioconjugates. ws[99mTc][Tc(N)(PNP3OH)]– and [99mTc][Tc(N)(PNP3)]– are better performing synthons in terms of labeling efficiency and in vivo performance than the [99mTc][Tc(N)(PNP43)] framework and are therefore more suitable for further radiopharmaceutical purposes. Furthermore, the good labeling properties of the ws[99mTc][Tc(N)(PNP3OH)]– framework can be exploited to extend this technology to the labeling of temperature-sensitive biomolecules suitable for SPECT imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号