首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One‐electron oxidation of the stibines Aryl3Sb ( 1 , Aryl=2,6‐i Pr2‐4‐OMe‐C6H2; 2 , Aryl=2,4,6‐i Pr3‐C6H2) with AgSbF6 and NaBArylF4 (ArylF=3,5‐(CF3)2C6H3) afforded the first structurally characterized examples of antimony‐centered radical cations 1 .+[BArylF4] and 2 .+[BArylF4]. Their molecular and electronic structures were investigated by single‐crystal X‐ray diffraction, electron paramagnetic resonance spectroscopy (EPR) and UV/Vis absorption spectroscopy, in conjunction with theoretical calculations. Moreover, their reactivity was investigated. The reaction of 2 .+[BArylF4] and p ‐benzoquinone afforded a dinuclear antimony dication salt 3 2+[BArylF4]2, which was characterized by NMR spectroscopy and X‐ray diffraction analysis. The formation of the dication 3 2+ further confirms that the isolated stibine radical cations are antimony‐centered.  相似文献   

2.
One‐electron oxidation of the stibines Aryl3Sb ( 1 , Aryl=2,6‐i Pr2‐4‐OMe‐C6H2; 2 , Aryl=2,4,6‐i Pr3‐C6H2) with AgSbF6 and NaBArylF4 (ArylF=3,5‐(CF3)2C6H3) afforded the first structurally characterized examples of antimony‐centered radical cations 1 .+[BArylF4] and 2 .+[BArylF4]. Their molecular and electronic structures were investigated by single‐crystal X‐ray diffraction, electron paramagnetic resonance spectroscopy (EPR) and UV/Vis absorption spectroscopy, in conjunction with theoretical calculations. Moreover, their reactivity was investigated. The reaction of 2 .+[BArylF4] and p ‐benzoquinone afforded a dinuclear antimony dication salt 3 2+[BArylF4]2, which was characterized by NMR spectroscopy and X‐ray diffraction analysis. The formation of the dication 3 2+ further confirms that the isolated stibine radical cations are antimony‐centered.  相似文献   

3.
The reaction of fumaryl fluoride with the superacidic solutions XF/MF5 (X=H, D; M=As, Sb) results in the formation of the monoprotonated and diprotonated species, dependent on the stoichiometric ratio of the Lewis acid to fumaryl fluoride. The salts [C4H3F2O2]+[MF6] (M=As, Sb) and [C4H2X2F2O2]2+([MF6])2 (X=H, D; M=As, Sb) are the first examples with a protonated acyl fluoride moiety. They were characterized by low-temperature vibrational spectroscopy. Low-temperature NMR spectroscopy and single-crystal X-ray structure analyses were carried out for [C4H3F2O2]+[SbF6] as well as for [C4H4F2O2]2+([MF6])2 (M=As, Sb). The experimental results are discussed together with quantum chemical calculations of the cations [C4H4F2O2 ⋅ 2 HF]2+ and [C4H3F2O2 ⋅ HF]+ at the B3LYP/aug-cc-pVTZ level of theory. In addition, electrostatic potential (ESP) maps combined with natural population analysis (NPA) charges were calculated in order to investigate the electron distribution and the charge-related properties of the diprotonated species. The C−F bond lengths in the protonated dication are considerably reduced on account of the +R effect.  相似文献   

4.
[(BDI)Mg+][B(C6F5)4] ( 1 ; BDI=CH[C(CH3)NDipp]2; Dipp=2,6-diisopropylphenyl) was prepared by reaction of (BDI)MgnPr with [Ph3C+][B(C6F5)4]. Addition of 3-hexyne gave [(BDI)Mg+ ⋅ (EtC≡CEt)][B(C6F5)4]. Single-crystal X-ray analysis, NMR investigations, Raman spectra, and DFT calculations indicate a significant Mg-alkyne interaction. Addition of the terminal alkynes PhC≡CH or Me3SiC≡CH led to alkyne deprotonation by the BDI ligand to give [(BDI-H)Mg+(C≡CPh)]2 ⋅ 2 [B(C6F5)4] ( 2 , 70 %) and [(BDI-H)Mg+(C≡CSiMe3)]2 ⋅ 2 [B(C6F5)4] ( 3 , 63 %). Addition of internal alkynes PhC≡CPh or PhC≡CMe led to [4+2] cycloadditions with the BDI ligand to give {Mg+C(Ph)=C(Ph)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 4 , 53 %) and {Mg+C(Ph)=C(Me)C[C(Me)=NDipp]2}2 ⋅ 2 [B(C6F5)4] ( 5 , 73 %), in which the Mg center is N,N,C-chelated. The (BDI)Mg+ cation can be viewed as an intramolecular frustrated Lewis pair (FLP) with a Lewis acidic site (Mg) and a Lewis (or Brønsted) basic site (BDI). Reaction of [(BDI)Mg+][B(C6F5)4] ( 1 ) with a range of phosphines varying in bulk and donor strength generated [(BDI)Mg+ ⋅ PPh3][B(C6F5)4] ( 6 ), [(BDI)Mg+ ⋅ PCy3][B(C6F5)4] ( 7 ), and [(BDI)Mg+ ⋅ PtBu3][B(C6F5)4] ( 8 ). The bulkier phosphine PMes3 (Mes=mesityl) did not show any interaction. Combinations of [(BDI)Mg+][B(C6F5)4] and phosphines did not result in addition to the triple bond in 3-hexyne, but during the screening process it was discovered that the cationic magnesium complex catalyzes the hydrophosphination of PhC≡CH with HPPh2, for which an FLP-type mechanism is tentatively proposed.  相似文献   

5.
The three-coordinate aluminum cations ligated by N-heterocyclic carbenes (NHCs) [(NHC) ⋅ AlMes2]+[B(C6F5)4] (NHC=IMeMe 4 , IiPrMe 5 , IiPr 6 , Mes=2,4,6-trimethylphenyl) were prepared via hydride abstraction of the alanes (NHC) ⋅ AlHMes2 (NHC=IMeMe 1 , IiPrMe 2 , IiPr 3 ) using [Ph3C]+[B(C6F5)4] in toluene as hydride acceptor. If this reaction was performed in diethyl ether, the corresponding four-coordinate aluminum etherate cations [(NHC) ⋅ AlMes2(OEt2)]+ [B(C6F5)4] 7 – 9 (NHC=IMeMe 7 , IiPrMe 8 , IiPr 9 ) were isolated. According to a theoretical and experimental assessment of the Lewis-acidity of the [(IMeMe) ⋅ AlMes2]+ cation is the acidity larger than that of B(C6F5)3 and of similar magnitude as reported for Al(C6F5)3. The reaction of [(IMeMe) ⋅ AlMes2]+[B(C6F5)4] 4 with the sterically less demanding, basic phosphine PMe3 afforded a mixed NHC/phosphine stabilized cation [(IMeMe) ⋅ AlMes2(PMe3)]+[B(C6F5)4] 10 . Equimolar mixtures of 4 and the sterically more demanding PCy3 gave a frustrated Lewis-pair (FLP), i.e., [(IMeMe) ⋅ AlMes2]+[B(C6F5)4]/PCy3 FLP-11 , which reacts with small molecules such as CO2, ethene, and 2-butyne.  相似文献   

6.
Antimony pentafluoride is a strong Lewis acid and fluoride-ion acceptor that has not previously demonstrated any discreet fluoride-ion donor properties. The first donor-stabilised [SbF4]+ cations were prepared from the autoionisation of SbF5 in the presence of bidentate N-donor ligands 2,2’-bipyridine (bipy) and 1,10-phenanthroline (phen) as their [SbF6] salts. The [SbF4(N−N)][Sb2F11] (N−N=bipy, phen) salts were synthesised by the addition of one equivalent of SbF5⋅SO2 to [SbF4(N−N)][SbF6] in liquid SO2. The salts show remarkable stability and were characterised by Raman spectroscopy and multinuclear NMR spectroscopy. The crystal structures of [SbF4(phen)][SbF6] ⋅ 3CH3CN and [SbF4(phen)][SbF6] ⋅ 2SO2 were determined, showing distorted octahedral cations. DFT calculations and NBO analyses reveal that significant degree of electron-pair donation from N to Sb stabilizes [SbF4]+ with the Sb−N bond strength being approximately two thirds of that of the Sb−F bonds in these cations and the cationic charge being primarily ligand-centred.  相似文献   

7.
The noble-gas difluoride adducts, NgF2 ⋅ CrOF4 and NgF2 ⋅ 2CrOF4 (Ng=Kr and Xe), have been synthesized and structurally characterized at low temperatures by Raman spectroscopy and single-crystal X-ray diffraction. The low fluoride ion affinity of CrOF4 renders it incapable of inducing fluoride ion transfer from NgF2 (Ng=Kr and Xe) to form ion-paired salts of the [NgF]+ cations having either the [CrOF5] or [Cr2O2F9] anions. The crystal structures show the NgF2 ⋅ CrOF4 adducts are comprised of Ft−Ng−Fb- - -Cr(O)F4 structural units in which NgF2 is weakly coordinated to CrOF4 by means of a fluorine bridge, Fb, in which Ng−Fb is elongated relative to the terminal Ng−Ft bond. In contrast with XeF2 ⋅ 2MOF4 (M=Mo or W) and KrF2 ⋅ 2MoOF4, in which the Lewis acidic, F4(O)M- - -Fb- - -M(O)F3 moiety coordinates to Ng through a single M- - -Fb−Ng bridge, both fluorine ligands of NgF2 coordinate to CrOF4 molecules to form F4(O)Cr- - -Fb−Ng−Fb- - -Cr(O)F4 adducts in which both Ng−Fb bonds are only marginally elongated relative to the Ng−F bonds of free NgF2. Quantum-chemical calculations show that the Cr−Fb bonds of NgF2 ⋅ CrOF4 and NgF2 ⋅ 2CrOF4 are predominantly electrostatic with a small degree of covalent character that accounts for their nonlinear Cr- - -Fb−Ng bridge angles and staggered O−Cr- - -Fb−Ng−Ft dihedral angles. The crystal structures and Raman spectra of two CrOF4 polymorphs have also been obtained. Both are comprised of fluorine-bridged chains that are cis- and trans-fluorine-bridged with respect to oxygen.  相似文献   

8.
Featuring an extra electron in the π* antibonding orbital, species with a 2-center-3-electron (2c3e) π bond without an underlying σ bond are scarcely known. Herein, we report the synthesis, isolation and characterization of a radical anion salt [K(18-C-6)]+{[(HCNDipp)2Si]2P2}⋅ (i.e. [K(18-C-6)]+ 3 ⋅) (18-C-6=18-crown-6, Dipp=2,6-diisopropylphenyl), in which 3 ⋅ features a perfectly planar Si2P2 four-membered ring. This species represents the first example of a Si- and P-containing analog of a bicyclo[1.1.0]butane radical anion. The unusual bonding motif of 3 ⋅ was thoroughly investigated via X-ray diffraction crystallography, electron paramagnetic resonance spectroscopy (EPR), and calculations by density functional theory (DFT), which collectively unveiled the existence of a 2c3e π bond between the bridgehead P atoms and no clearly defined supporting P−P σ bond.  相似文献   

9.
Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F concentration increases, indicating that the F anions interact with Ln3+ via substituting the coordinated Cl anions, and confirm [LnClxFy]3−x−y (ymax=3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl and F anions, which leads to the formation of four distinct Ln(III) species: [LnCl6]3−, [LnCl5F]3−, [LnCl4F2]3− and [LnCl4F3]4−. Among them, the seven-coordinated [LnCl4F3]4− complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln−F interaction is weaker than that between transition metal and F ions.  相似文献   

10.
LGa(P2OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2OC)cAAC][K(DB-18-c-6)] 3 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3 ⋅ was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6F5)4] (Fc=ferrocenium) to 2 and with TEMPO to [L−HGa(P2OC)cAAC][K(DB-18-c-6)] 4 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4 . The solid state structures of 2 , 3 K(DB-18-c-6], and 4 [K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).  相似文献   

11.
A rational approach to modulating easy-axis magnetic anisotropy by varying the axial donor ligand in heptacoordinated FeII complexes has been explored. In this series of complexes with formulae of [Fe(H4L)(NCS)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 1 ), [Fe(H4L)(NCSe)2] ⋅ 3 DMF ⋅ 0.5 H2O ( 2 ), and [Fe(H4L)(NCNCN)2] ⋅ DMF ⋅ H2O ( 3 ) [H4L=2,2′-{pyridine-2,6-diylbis(ethan-1-yl-1-ylidene)}bis(N-phenylhydrazinecarboxamide)], the axial positions are successively occupied by different nitrogen-based π-donor ligands. Detailed dc and ac magnetic susceptibility measurements reveal the existence of easy-axis magnetic anisotropy for all of the complexes, with 1 [Ueff=21 K, τ0=1.72×10−6 s] and 2 [Ueff=25 K, τ0=2.25×10−6 s] showing field-induced slow magnetic relaxation behavior. However, both experimental studies and theoretical calculations indicate the magnitude of the D value of complex 3 to be larger than those of complexes 1 and 2 due to the axial bond angle being smaller than that for an ideal geometry. Detailed analysis of the field and temperature dependences of relaxation time for 1 and 2 has revealed that multiple relaxation processes (quantum tunneling of magnetization, direct, and Raman) are involved in slow magnetic relaxation for both of these complexes. Magnetic dilution experiments support the role of intermolecular short contacts.  相似文献   

12.
Crystal growth from anhydrous hydrogen fluoride solutions of M2+ (M=Cu, Ag) and [AuF6] gave M(AuF6)2 salts (M=Cu, Ag). Similar attempts to prepare single crystals of the corresponding nickel, zinc and magnesium salts failed. The crystal structure of Cu(AuF6)2 consists of layers of Cu2+ cations connected by [AuF6] anions, thus forming slabs. Only van der Waals interactions exist between adjacent slabs. The crystal structure of Ag(AuF6)2 consists of a three-dimensional framework in which Ag+ cations are linked by [AuF6] anions. Both structures are members of the MII(XVF6)2 family, in which seven different structure types have been observed to date. In the crystal structure of O2(CuF)3(AuF6)4 ⋅ HF, the bridging AuF6 units connect [−Cu−F−Cu−F−] chains to form stacks between which O2+ cations and HF molecules are located.  相似文献   

13.
A novel metal–organic framework [Zn3(Ni-H2TPPP)(Ni-H4TPPP)(Ni-H5TPPP) ⋅ 7(CH3)2NH2 ⋅ DMF ⋅ 7 H2O] (where Ni-HxTPPP (x=2,4,5) are partially deprotonated [5,10,15,20-tetrakis(3-(phosphonatophenyl)-porphyrinato(2-))]nickel(II) species), IPCE-2Ni , with outstanding proton conductivity (1.0×10−2 S cm−1 at 75 °C and 95 % relative humidity) has been obtained. The high concentration of free phosphonate groups and compensating dimethylammonium cations bound by hydrogen bonds in the unique crystal structure of IPCE-2Ni is a key factor responsible for the observed high proton conductivity, which is one order of magnitude higher than for the corresponding MOF based on 5,10,15,20-tetrakis(4-(phosphonatophenyl)porphyrinato(2-))]nickel(II) IPCE-1Ni and comparable with that of leaders among MOFs.  相似文献   

14.
With their adjustable structures and diverse functions, polyoxometalate (POM)-resorcin[4]arene-based inorganic–organic complexes are a kind of potential multifunctional material. They have potential applications for lithium ion batteries (LIBs). However, the relationship between different coordinated metal ions and electrochemical performance has rarely been investigated. Here, three functionalized POM-resorcin[4]arene-based inorganic–organic materials, [Co2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 2 EtOH ⋅ 4.5 H2O ( 1 ), [Ni2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 4 EtOH ⋅ 13 H2O ( 2 ), and [Zn2(TMR4 A)2(H2O)10][SiW12O40] ⋅ 2 EtOH ⋅ 2 H2O ( 3 ), have been synthesized. Furthermore, to enhance the conductivities of these compounds, 1–3 were doped with reduced graphene oxide (RGO) to give composites 1 @RGO- 3 @RGO, respectively. As anode materials for LIBs, 1 @RGO- 3 @RGO can deliver very high discharge capacities (1445.9, 1285.0 and 1095.3 mAh g−1, respectively) in the initial run, and show discharge capacities of 898, 665 and 651 mAh g−1, respectively, at a current density of 0.1 A g−1 over 100 runs. More importantly, the discharge capacities of 319, 283 and 329 mAh g−1 were maintained for 1 @RGO- 3 @RGO even after 400 cycles at large current density (1 A g−1).  相似文献   

15.
Two iron(II) compounds with the general formula of [Fe(phen-TPE)2(NCX)2] ⋅ Y (phen-TPE=3-(tetraphenylethylene)-1,10-phenanthroline; X=S and Y=2DMF for 1 ⋅ 2DMF ; X=Se and Y=DMF for 2 ⋅ DMF ) were synthesized and characterized by single-crystal X-ray crystallography and magnetic measurements. Both compounds exhibited thermal-induced complete one-step spin-crossover (SCO) behavior with the critical transition temperatures of 210 K and 260 K for 1 ⋅ 2DMF and 2 ⋅ DMF , respectively. The SCO behavior of these two isomorphic compounds depended significantly on robust intermolecular π⋅⋅⋅π interactions, NCX groups and solvent molecules.  相似文献   

16.
Within the second funding period of the SPP 1708 “Material Synthesis near Room Temperature”,which started in 2017, we were able to synthesize novel anionic species utilizing Ionic Liquids (ILs) both, as reaction media and reactant. ILs, bearing the decomposable and non-innocent methyl carbonate anion [CO3Me], served as starting material and enabled facile access to pseudohalide salts by reaction with Me3Si−X (X=CN, N3, OCN, SCN). Starting with the synthesized Room temperature Ionic Liquid (RT-IL) [nBu3MeN][B(OMe)3(CN)], we were able to crystallize the double salt [nBu3MeN]2[B(OMe)3(CN)](CN). Furthermore, we studied the reaction of [WCC]SCN and [WCC]CN (WCC=weakly coordinating cation) with their corresponding protic acids HX (X=SCN, CN), which resulted in formation of [H(NCS)2] and the temperature labile solvate anions [CN(HCN)n] (n=2, 3). In addition, the highly labile anionic HCN solvates were obtained from [PPN]X ([PPN]=μ-nitridobis(triphenylphosphonium), X=N3, OCN, SCN and OCP) and HCN. Crystals of [PPN][X(HCN)3] (X=N3, OCN) and [PPN][SCN(HCN)2] were obtained when the crystallization was carried out at low temperatures. Interestingly, reaction of [PPN]OCP with HCN was noticed, which led to the formation of [P(CN)2], crystallizing as HCN disolvate [PPN][P(CN⋅HCN)2]. Furthermore, we were able to isolate the novel cyanido(halido) silicate dianions of the type [SiCl0.78(CN)5.22]2− and [SiF(CN)5]2− and the hexa-substituted [Si(CN)6]2− by temperature controlled halide/cyanide exchange reactions. By facile neutralization reactions with the non-innocent cation of [Et3HN]2[Si(CN)6] with MOH (M=Li, K), Li2[Si(CN)6] ⋅ 2 H2O and K2[Si(CN)6] were obtained, which form three dimensional coordination polymers. From salt metathesis processes of M2[Si(CN)6] with different imidazolium bromides, we were able to isolate new imidazolium salts and the ionic liquid [BMIm]2[Si(CN)6]. When reacting [Mes(nBu)Im]2[Si(CN)6] with an excess of the strong Lewis acid B(C6F5)3, the voluminous adduct anion {Si[CN⋅B(C6F5)3]6}2− was obtained.  相似文献   

17.
Electron-transferable oxidants such as B(C6F5)3/nBuLi, B(C6F5)3/LiB(C6F5)4, B(C6F5)3/LiHBEt3, Al(C6F5)3/(o-RC6H4)AlH2 (R=N(CMe2CH2)2CH2), B(C6F5)3/AlEt3, Al(C6F5)3, Al(C6F5)3/nBuLi, Al(C6F5)3/AlMe3, (CuC6F5)4, and Ag2SO4, respectively were employed for reactions with (L)2Si2C4(SiMe3)2(C2SiMe3)2 (L=PhC(NtBu)2, 1 ). The stable radical cation [ 1 ]+. was formed and paired with the anions [nBuB(C6F5)3] (in 2 ), [B(C6F5)4] (in 3 ), [HB(C6F5)3] (in 4 ), [EtB(C6F5)3] (in 5 ), {[(C6F5)3Al]2(μ-F)] (in 6 ), [nBuAl(C6F5)3] (in 7 ), and [Cu(C6F5)2] (in 8 ), respectively. The stable dication [ 1 ]2+ was also generated with the anions [EtB(C6F5)3] ( 9 ) and [MeAl(C6F5)3] ( 10 ), respectively. In addition, the neutral compound [(L)2Si2C4(SiMe3)2(C2SiMe3)2][μ-O2S(O)2] ( 11 ) was obtained. Compounds 2 – 11 are characterized by UV-vis absorption spectroscopy, X-ray crystallography, and elemental analysis. Compounds 2 – 8 are analyzed by EPR spectroscopy and compounds 9 – 11 by NMR spectroscopy. The structure features are discussed on the central Si2C4-rings of 1 , [ 1 ]+., [ 1 ]2+, and 11 , respectively.  相似文献   

18.
Cationic [Ru(η5-C5H5)(CH3CN)3]+ complex, tris(acetonitrile)(cyclopentadienyl)ruthenium(II), gives rise to a very rich organometallic chemistry. Combined with diimine ligands, and 1,10-phenanthroline in particular, this system efficiently catalyzes diazo decomposition processes to generate metal-carbenes which undergo a series of original transformations in the presence of Lewis basic substrates. Herein, syntheses and characterizations of [CpRu(Phen)(L)] complexes with (large) lipophilic non-coordinating (PF6 and BArF) and coordinating TRISPHAT-N anions are reported. Complex [CpRu(η6-naphthalene)][BArF] ( [1][BArF] ) is readily accessible, in high yield, by direct counterion exchange between [1][PF6] and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) salts. Ligand exchange of [1][BArF] in acetonitrile generated stable [Ru(η5-C5H5)(CH3CN)3][BArF] ( [2][BArF] ) complex in high yield. Then, the desired [CpRu(Phen)(CH3CN)] ( [3] ) complexes were obtained from either the [1] or [2] complex in the presence of the 1,10-phenanthroline as ligand. For characterization and comparison purposes, the anionic hemilabile ligand TRISPHAT−N (TTN) was introduced on the ruthenium center, from the complex [3][PF6] , to quantitatively generate the desired complex [CpRu(Phen)(TTN)] ( [4] ) by displacement of the remaining acetonitrile ligand and of the PF6 anion. Solid state structures of complexes [1][BArF] , [2][BArF] , [3][BArF] , [3][PF6] and [4] were determined by X-ray diffraction studies and are discussed herein.  相似文献   

19.
Molten mixtures of XeF6 and CrVIOF4 react by means of F2 elimination to form [XeF5][Xe2F11][CrVOF5] ⋅ 2 CrVIOF4, [XeF5]2[CrIVF6] ⋅ 2 CrVIOF4, [Xe2F11]2[CrIVF6], and [XeF5]2[CrV2O2F8], whereas their reactions in anhydrous hydrogen fluoride (aHF) and CFCl3/aHF yield [XeF5]2[CrV2O2F8] ⋅ 2 HF and [XeF5]2[CrV2O2F8] ⋅ 2 XeOF4. Other than [Xe2F11][MVIOF5] and [XeF5][MVI2O2F9] (M=Mo or W), these salts are the only Group 6 oxyfluoro-anions known to stabilize noble-gas cations. Their reaction pathways involve redox transformations that give [XeF5]+ and/or [Xe2F11]+ salts of the known [CrVOF5]2− and [CrIVF6]2− anions, and the novel [CrV2O2F8]2− anion. A low-temperature Raman spectroscopic study of an equimolar mixture of solid XeF6 and CrOF4 revealed that [Xe2F11][CrVIOF5] is formed as a reaction intermediate. The salts were structurally characterized by LT single-crystal X-ray diffraction and LT Raman spectroscopy, and provide the first structural characterizations of the [CrVOF5]2− and [CrV2O2F8]2− anions, where [CrV2O2F8]2− represents a new structural motif among the known oxyfluoro-anions of Group 6. The X-ray structures show that [XeF5]+ and [Xe2F11]+ form ion pairs with their respective anions by means of Xe- - -F–Cr bridges. Quantum-chemical calculations were carried out to obtain the energy-minimized, gas-phase geometries and the vibrational frequencies of the anions and their ion pairs and to aid in the assignments of their Raman spectra.  相似文献   

20.
We report the synthesis and characterization of the nickelocenium cations [NiCp2]⋅+ and [NiCp2]2+ as their [F-{Al(ORF)3}2] (Cp = C5H5; RF=C(CF3)3) salts. Diamagnetic [NiCp2]2+ represents the first example for the isolation of an unsubstituted parent metallocene dication. Both salts were generated by reacting neutral NiCp2 with [NO]+[F-{Al(ORF)3}2] in 1,2,3,4-tetrafluorobenzene (4FB). The salts were characterized by single crystal X-ray diffraction (XRD), indicating shorter metal-ligand bond lengths for the higher charged salt. Powder XRD shows the salts to be phase pure, cyclic voltammetry in 4FB gave quasi reversible redox waves at −0.44 (0→1) and +1.17 V (1→2) vs Fc/Fc+. The 1H NMR of [NiCp2]2+ is a singlet at 8.6 ppm, whereas paramagnetic [NiCp2]⋅+ is significantly shifted upfield to −103.1 ppm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号