首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inducing self-motion illusions referred as vection are critical for improving the sensation of walking in virtual environments (VE). Adding viewpoint oscillations to a constant forward velocity in VE is effective for improving vection strength under static conditions. However, the effects of oscillation frequency and amplitude on vection strength under treadmill walking conditions are still unclear. Besides, due to the visuomotor entrainment mechanism, these visual oscillations would affect gait patterns and be detrimental for achieving natural walking if not properly designed. This study was aimed at determining the optimal frequency and amplitude of vertical viewpoint oscillations for improving vection strength and reducing gait constraints. Seven subjects walked on a treadmill while watching a visual scene. The visual scene presented a constant forward velocity equal to the treadmill velocity with different vertical viewpoint oscillations added. Five oscillation patterns with different combinations of frequency and amplitude were tested. Subjects gave verbal ratings of vection strength. The mediolateral (M-L) center of pressure (CoP) complexity was calculated to indicate gait constraints. After the experiment, subjects were asked to give the best and the worst oscillation pattern based on their walking experience. The oscillation frequency and amplitude had strong positive correlations with vection strength. The M-L CoP complexity was reduced under oscillations with low frequency. The medium oscillation amplitude had greater M-L CoP complexity than the small and large amplitude. Besides, subjects preferred those oscillation patterns with large gait complexity. We suggested that the oscillation amplitude with largest M-L CoP complexity should first be chosen to reduce gait constraints. Then, increasing the oscillation frequency to improve vection strength until individual preference or the boundary of motion sickness. These findings provide important guidelines to promote the sensation of natural walking in VE.  相似文献   

2.
In this paper, the diffusion entropy technique is applied to investigate the scaling behavior of stride interval fluctuations of human gait. The scaling behaviors of the stride interval of human walking at norm, slow, and fast rate are similar; with the scale-invariance exponents in the interval [0.663,0.955][0.663,0.955], of which the mean value is 0.821±0.0110.821±0.011. Dynamical analysis of these stride interval fluctuations reveals a self-similar pattern: fluctuation at one time scale are statistically similar to those at multiple other time scales, at least over hundreds of steps, while the healthy subjects walk at their norm rate. The long-range correlations are observed during the spontaneous walking by removal of the trend in the time series with Fourier filter. These findings uncover that the fractal dynamics of stride interval fluctuation of human gait are normally intrinsic to the locomotor systems.  相似文献   

3.
Human brain, a dynamic complex system, can be studied with different approaches, including linear and nonlinear ones. One of the nonlinear approaches widely used in electroencephalographic (EEG) analyses is the entropy, the measurement of disorder in a system. The present study investigates brain networks applying approximate entropy (ApEn) measure for assessing the hemispheric EEG differences; reproducibility and stability of ApEn data across separate recording sessions were evaluated. Twenty healthy adult volunteers were submitted to eyes-closed resting EEG recordings, for 80 recordings. Significant differences in the occipital region, with higher values of entropy in the left hemisphere than in the right one, show that the hemispheres become active with different intensities according to the performed function. Besides, the present methodology proved to be reproducible and stable, when carried out on relatively brief EEG epochs but also at a 1-week distance in a group of 36 subjects. Nonlinear approaches represent an interesting probe to study the dynamics of brain networks. ApEn technique might provide more insight into the pathophysiological processes underlying age-related brain disconnection as well as for monitoring the impact of pharmacological and rehabilitation treatments.  相似文献   

4.
Supervised exercise therapy (SET) is a conservative non-operative treatment strategy for improving walking performance in patients with peripheral artery disease (PAD). Gait variability is altered in patients with PAD, but the effect of SET on gait variability is unknown. Forty-three claudicating patients with PAD underwent gait analysis before and immediately after a 6-month SET program. Nonlinear gait variability was assessed using sample entropy, and the largest Lyapunov exponent of the ankle, knee, and hip joint angle time series. Linear mean and variability of the range of motion time series for these three joint angles were also calculated. Two-factor repeated measure analysis of variance determined the effect of the intervention and joint location on linear and nonlinear dependent variables. After SET, walking regularity decreased, while the stability remained unaffected. Ankle nonlinear variability had increased values compared with the knee and hip joints. Linear measures did not change following SET, except for knee angle, in which the magnitude of variations increased after the intervention. A six-month SET program produced changes in gait variability toward the direction of healthy controls, which indicates that in general, SET improved walking performance in individuals with PAD.  相似文献   

5.
The prevalence of neurodegenerative diseases (NDD) has grown rapidly in recent years and NDD screening receives much attention. NDD could cause gait abnormalities so that to screen NDD using gait signal is feasible. The research aim of this study is to develop an NDD classification algorithm via gait force (GF) using multiscale sample entropy (MSE) and machine learning models. The Physionet NDD gait database is utilized to validate the proposed algorithm. In the preprocessing stage of the proposed algorithm, new signals were generated by taking one and two times of differential on GF and are divided into various time windows (10/20/30/60-sec). In feature extraction, the GF signal is used to calculate statistical and MSE values. Owing to the imbalanced nature of the Physionet NDD gait database, the synthetic minority oversampling technique (SMOTE) was used to rebalance data of each class. Support vector machine (SVM) and k-nearest neighbors (KNN) were used as the classifiers. The best classification accuracies for the healthy controls (HC) vs. Parkinson’s disease (PD), HC vs. Huntington’s disease (HD), HC vs. amyotrophic lateral sclerosis (ALS), PD vs. HD, PD vs. ALS, HD vs. ALS, HC vs. PD vs. HD vs. ALS, were 99.90%, 99.80%, 100%, 99.75%, 99.90%, 99.55%, and 99.68% under 10-sec time window with KNN. This study successfully developed an NDD gait classification based on MSE and machine learning classifiers.  相似文献   

6.
Insomnia is a common sleep disorder that is closely associated with the occurrence and deterioration of cardiovascular disease, depression and other diseases. The evaluation of pharmacological treatments for insomnia brings significant clinical implications. In this study, a total of 20 patients with mild insomnia and 75 healthy subjects as controls (HC) were included to explore alterations of electroencephalogram (EEG) complexity associated with insomnia and its pharmacological treatment by using multi-scale permutation entropy (MPE). All participants were recorded for two nights of polysomnography (PSG). The patients with mild insomnia received a placebo on the first night (Placebo) and temazepam on the second night (Temazepam), while the HCs had no sleep-related medication intake for either night. EEG recordings from each night were extracted and analyzed using MPE. The results showed that MPE decreased significantly from pre-lights-off to the period during sleep transition and then to the period after sleep onset, and also during the deepening of sleep stage in the HC group. Furthermore, results from the insomnia subjects showed that MPE values were significantly lower for the Temazepam night compared to MPE values for the Placebo night. Moreover, MPE values for the Temazepam night showed no correlation with age or gender. Our results indicated that EEG complexity, measured by MPE, may be utilized as an alternative approach to measure the impact of sleep medication on brain dynamics.  相似文献   

7.
杨孝敬  杨阳  李淮周  钟宁 《物理学报》2016,65(21):218701-218701
提出采用模糊近似熵的方法对功能磁共振成像(functional magnetic resonance imaging,fMRI)复杂度量化分析,并与样本熵进行比较.采用的22个成年抑郁症患者中,11位男性,年龄在18—65岁之间.我们期望测量的静息态fMRI信号复杂度与Goldberger/Lipsitz模型一致,越健康、越稳健其生理表现的复杂度越大,且复杂度随年龄的增大而降低.全脑平均模糊近似熵与年龄之间差异性显著(r=-0.512,p0.001).相比之下,样本熵与年龄之间差异性不显著(r=-0.102,p=0.482).模糊近似熵同样与年龄相关脑区(额叶、顶叶、边缘系统、颞叶、小脑顶叶)之间差异性显著(p0.05),样本熵与年龄相关脑区之间差异性不显著性.这些结果与Goldberger/Lipsitz模型一致,说明采用模糊近似熵分析fMRI数据复杂度是一个有效的新方法.  相似文献   

8.
雷敏  孟光  张文明  Nilanjan Sarkar 《物理学报》2016,65(10):108701-108701
自闭症谱系障碍是一种涉及感觉、情感、记忆、语言、智力、动作等认知功能和执行功能障碍的精神疾病. 本文从神经工效学角度出发, 用虚拟开车环境作为复杂多任务激励源将大脑系统与人体动作控制等有机地结合起来, 通过对脑电信号的滑动平均样本熵分析来探索自闭症儿童在虚拟开车环境中的脑活动特征. 研究发现不论是休息状态还是开车状态, 自闭症患者的滑动平均样本熵总体上低于健康者, 尤其在前额叶、颞叶、顶叶和枕叶功能区, 表明自闭症儿童的行为适应性较低. 不过, 自闭症患者的开车状态与健康受试者的休息状态比较接近, 表明虚拟开车环境或许有助于自闭症患者的干预治疗. 此外, 自闭症患者在颞叶区呈现显著性右半球优势性. 本研究为进一步深入开展自闭症疾病的机理研究及其诊断、评估和干预等研究提供一种新的研究思路.  相似文献   

9.
Fluctuations in the stride interval time series of unconstrained walking are not random but seem to exhibit long-range correlations that decay as a power law (Hausdorff et al. (1995) [35]). Here, we examine whether asymmetries are present in the long-range correlations of different gait parameters (stride, swing and stance intervals) for the left and right limbs. Gait dynamics corresponding to 16 healthy subjects were obtained from the Physionet database, which contains stride, stance and swing intervals for both left and right limbs. Detrended Fluctuation Analysis (DFA) revealed the presence of asymmetric long-range correlations in all gait cycle variables investigated. A rich variety of scaling exponent dynamics was found, with the presence of synchronicity, decreased correlations and dominant correlations. The results are discussed in terms of the hypothesis that reduced strength of long-range correlations reflect both enhanced stability and adaptability.  相似文献   

10.
We investigated the dynamics of particulate matter data, recorded in Tito, a small industrial area of southern Italy. The analysis of these signals was performed using the Fisher information measure (FIM), which is a powerful tool for investigating complex and nonstationary signals, and the Shannon entropy, which is a well-known tool for investigating the degree of disorder in dynamical systems. Our results point to an increase of disorder and complexity from fine to coarse particulates.  相似文献   

11.
We study the permutation complexity of finite-state stationary stochastic processes based on a duality between values and orderings between values. First, we establish a duality between the set of all words of a fixed length and the set of all permutations of the same length. Second, on this basis, we give an elementary alternative proof of the equality between the permutation entropy rate and the entropy rate for a finite-state stationary stochastic processes first proved in [J.M. Amigó, M.B. Kennel, L. Kocarev, The permutation entropy rate equals the metric entropy rate for ergodic information sources and ergodic dynamical systems, Physica D 210 (2005) 77-95]. Third, we show that further information on the relationship between the structure of values and the structure of orderings for finite-state stationary stochastic processes beyond the entropy rate can be obtained from the established duality. In particular, we prove that the permutation excess entropy is equal to the excess entropy, which is a measure of global correlation present in a stationary stochastic process, for finite-state stationary ergodic Markov processes.  相似文献   

12.
庄建军  宁新宝  邹鸣  孙飙  杨希 《物理学报》2008,57(5):2805-2811
利用两种基于熵的非线性复杂度测度:近似熵和样本熵,研究了专业射击运动员两种不同状态下(休息和练习赛)心率变异性信号的复杂度.计算结果表明:射击运动员休息时其心率变异性信号的熵值大于射击比赛时信号的熵值,这意味着运动员一旦进行射击比赛时,其心率变异性信号复杂度降低了,心跳变得更为规则了.为了更好地应用这两种基于熵的方法,进一步分析了算法中的两个重要影响因素:矢量匹配容差r和序列长度N对算法性能的影响.分析结果表明:只要参数选择在合适的范围内,近似熵和样本熵都能够正确地区分出两种不 关键词: 近似熵 样本熵 复杂度 射击  相似文献   

13.
曹寅文  宋慎义  肖井华 《物理学报》2010,59(7):5163-5168
研究运动后青年心肺系统的耦合关系.通过提取在校学生运动后的心跳和呼吸信号,采用经验模态分解的方法对信号进行滤波,分析了心肺信号的相同步行为和心肺节律间耦合作用的相对强弱关系.结果表明,人体在运动后仍然存在心肺系统节律同步现象.这种同步比例不仅因人而异,而且因时而异.由传递熵的计算结果得知,呼吸对于心跳的耦合作用相对较大.  相似文献   

14.
Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the walking patterns of all three subject groups were clearly distinguishable from linearly autocorrelated Gaussian noise. As a collateral benefit of the methodological approach taken in this study, some of the first steps at characterizing the underlying structure of human locomotor dynamics have been taken. Implications for understanding the neuromuscular control of locomotion are discussed. (c) 2000 American Institute of Physics.  相似文献   

15.
(火积)的微观表述   总被引:3,自引:0,他引:3       下载免费PDF全文
程雪涛  梁新刚  徐向华 《物理学报》2011,60(6):60512-060512
在近独立粒子组成的系统中,Boltzmann发现了系统熵与其微观状态数的对数之间的正比关系,为熵这一物理概念提供了微观解释,Planck将其总结为著名的Boltzmann熵公式S = k lnΩ.与此对应,给出了单原子理想气体系统中(火积)的微观表达式,证明了(火积)为广延量. 分析讨论了孤立系统从不平衡态发展到热平衡态过程中系统微观状态数、熵、(火积)的变化情况,结果表明在该过程中系统的微观状态数、熵向着增加方向发展,而(火积)则向着减小方向发展,从而在微观角度 关键词: 微观状态数 熵 (火积) 不可逆性  相似文献   

16.
Walking performance is usually assessed by linear analysis of walking outcome measures. However, human movements consist of both linear and nonlinear complexity components. The purpose of this study was to use bidimensional multiscale entropy analysis of ultrasound images to evaluate the effects of various walking intensities on plantar soft tissues. Twelve participants were recruited to perform six walking protocols, consisting of three speeds (slow at 1.8 mph, moderate at 3.6 mph, and fast at 5.4 mph) for two durations (10 and 20 min). A B-mode ultrasound was used to assess plantar soft tissues before and after six walking protocols. Bidimensional multiscale entropy (MSE2D) and the Complexity Index (CI) were used to quantify the changes in irregularity of the ultrasound images of the plantar soft tissues. The results showed that the CI of ultrasound images after 20 min walking increased when compared to before walking (CI4: 0.39 vs. 0.35; CI5: 0.48 vs. 0.43, p < 0.05). When comparing 20 and 10 min walking protocols at 3.6 mph, the CI was higher after 20 min walking than after 10 min walking (CI4: 0.39 vs. 0.36, p < 0.05; and CI5: 0.48 vs. 0.44, p < 0.05). This is the first study to use bidimensional multiscale entropy analysis of ultrasound images to assess plantar soft tissues after various walking intensities.  相似文献   

17.
Multiscale entropy (MSE) is a prevalent algorithm used to measure the complexity of a time series. Because the coarse-graining procedure reduces the length of a time series, the conventional MSE algorithm applied to a short-term time series may yield an imprecise estimation of entropy or induce undefined entropy. To overcome this obstacle, the modified multiscale entropy (MMSE) was developed. The coarse-graining procedure was replaced with a moving-average procedure and a time delay was incorporated for constructing template vectors in calculating sample entropy. For conducting short-term time series analysis, this study shows that the MMSE algorithm is more reliable than the conventional MSE.  相似文献   

18.
基于近似熵的突变检测新方法   总被引:3,自引:0,他引:3       下载免费PDF全文
何文平  何涛  成海英  张文  吴琼 《物理学报》2011,60(4):49202-049202
近似熵是一个有效的非线性动力学指数,能够用于表征时间序列的复杂性,通过滑动窗口技术,近似熵对于一维时间序列的动力学结构突变具有一定的识别能力,但其突变检测结果依赖于子序列长度的选择,且不能准确定位突变点.鉴于此,本文提出了一种新的突变检测方法——滑动移除近似熵.测试结果表明,滑动移除近似熵具有检测结果稳定性好、准确性高等特点,明显优于滑动近似熵和Mann-Kendall方法,其在实际观测资料中的应用进一步证实了新方法的可靠性. 关键词: 近似熵 滑动移除近似熵 突变检测  相似文献   

19.
将小波变换用于处理人体行走时产生的加速度信号.利用离散小波变换的多尺度、多分辨率特性对原始加速度信号进行尺度分解,在对小波基以及分解尺度进行合理选取后准确地从加速度信号中提取出隐藏的步态节律.与利用阈值法直接对原始加速度信号提取峰值的算法比较后发现:利用小波分解得到与步态节律相关的特征尺度后再进行峰值检测能显著地提高信号峰值的检出率;即使当原始信号存在较严重的噪声干扰时,该方法也能保证所提取出的步态序列的准确性.这对于步态序列的后续分析具有至关重要的意义.研究表明,离散小波变换是一种有效的提取步态节律的方 关键词: 小波变换 步态序列 峰值检测 特征尺度  相似文献   

20.
How the complexity or irregularity of heart rate variability (HRV) changes across different sleep stages and the importance of these features in sleep staging are not fully understood. This study aimed to investigate the complexity or irregularity of the RR interval time series in different sleep stages and explore their values in sleep staging. We performed approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), distribution entropy (DistEn), conditional entropy (CE), and permutation entropy (PermEn) analyses on RR interval time series extracted from epochs that were constructed based on two methods: (1) 270-s epoch length and (2) 300-s epoch length. To test whether adding the entropy measures can improve the accuracy of sleep staging using linear HRV indices, XGBoost was used to examine the abilities to differentiate among: (i) 5 classes [Wake (W), non-rapid-eye-movement (NREM), which can be divide into 3 sub-stages: stage N1, stage N2, and stage N3, and rapid-eye-movement (REM)]; (ii) 4 classes [W, light sleep (combined N1 and N2), deep sleep (N3), and REM]; and (iii) 3 classes: (W, NREM, and REM). SampEn, FuzzyEn, and CE significantly increased from W to N3 and decreased in REM. DistEn increased from W to N1, decreased in N2, and further decreased in N3; it increased in REM. The average accuracy of the three tasks using linear and entropy features were 42.1%, 59.1%, and 60.8%, respectively, based on 270-s epoch length; all were significantly lower than the performance based on 300-s epoch length (i.e., 54.3%, 63.1%, and 67.5%, respectively). Adding entropy measures to the XGBoost model of linear parameters did not significantly improve the classification performance. However, entropy measures, especially PermEn, DistEn, and FuzzyEn, demonstrated greater importance than most of the linear parameters in the XGBoost model.300-s270-s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号