首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Self-assembled monolayers (SAMs) of N-heterocyclic olefins (NHOs) have been prepared on Au(111) and their thermal stability, adsorption geometry, and molecular order were characterized by X-ray photoelectron spectroscopy, polarized X-ray absorption spectroscopy, scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. The strong σ-bond character of NHO anchoring to Au induced high geometrical flexibility that enabled a flat-lying adsorption geometry via coordination to a gold adatom. The flat-lying adsorption geometry was utilized to further increase the surface interaction of the NHO monolayer by backbone functionalization with methyl groups that induced high thermal stability and a large impact on work-function values, which outperformed that of N-heterocyclic carbenes. STM measurements, supported by DFT modeling, identified that the NHOs were self-assembled in dimers, trimers, and tetramers constructed of two, three, and four complexes of NHO−Au-adatom. This self-assembly pattern was correlated to strong NHO−Au interactions and steric hindrance between adsorbates, demonstrating the crucial influence of the carbon-metal σ-bond on monolayer properties.  相似文献   

2.
The geometrical arrangement of tetracene on Cu (100) surface at monolayer coverage is studied by using scanning tunneling microscopy measurement and density functional theory (DFT) calculations. Tetracene molecule is found to be oriented with its molecular plane parallel to the substrate surface, and no perpendicular geometry is observed at this coverage. The molecule is aligned either in the [011] or [011] direction due to the fourfold symmetry of the Cu (100) surface. DFT calculations show that the molecule with the "flat-lying" mode has larger adsorption energy than that with the "upright standing" mode, indicating that the former is the more stable structure. With the flat-lying geometry, the carbon atoms prefer to be placed between surface Cu atoms. The molecular center prefers to be located at the bridge site between two nearest surface Cu atoms.  相似文献   

3.
The adsorption structures formed from a class of oligophenylene-ethynylenes on Au(111) under ultrahigh vacuum conditions is compared based on high-resolution scanning tunneling microscopy (STM) measurements. The molecules consist of three or four benzene rings connected by ethynylene spokes and are all functionalized identically with an aldehyde, a hydroxyl, and a bulky tert-butyl group. Compounds with the conjugated spokes placed in the para, meta, and threefold configurations were previously found to exclusively form molecular layers with flat-lying adsorption geometries. In contrast, the associated compound with spokes in the ortho configuration surprisingly differs in its adsorption by forming only structures with an upright adsorption orientation. The packing density for the structures formed by the compound with the ortho configuration is less dense than that in conventional self-assembled monolayers while still keeping the conducting backbone in an upright orientation. These structures are thus interesting from the perspective of performing single-molecule conduction measurements on the oligophenylene-ethynylene backbones.  相似文献   

4.
Flat-lying, densely packed DNA monolayers in which DNA chains are well organized have been successfully constructed on a mica surface by dropping a droplet of a DNA solution on a freshly cleaved mica surface and subsequently transferring the mica to ultrapure water for developing. The formation kinetics of such monolayers was studied by tapping mode atomic force microscopy (TMAFM) technique. A series of TMAFM images of DNA films obtained at various developing times show that before the sample was immersed into water for developing the DNA chains always seriously aggregated by contacting, crossing, or overlapping and formed large-scale networks on the mica surface. During developing, the fibers of DNA networks gradually dispersed into many smaller fibers up to single DNA chains. At the same time, the fibers or DNA chains also experienced rearrangement to decrease electrostatic repulsion and interfacial Gibbs free energy. Finally, a flat-lying, densely packed DNA monolayer was formed. A formation mechanism of the DNA monolayers was proposed that consists of aggregation, dispersion, and rearrangement. The effects of both DNA and Mg2+ concentration in the formation solution on DNA monolayer formation were also investigated in detail.  相似文献   

5.
The formation and molecular structure of self-assembled monolayers (SAMs) of anthracene-2-thiol (AnT) on Au(111) have been characterized by reflection adsorption infrared spectroscopy, thermal desorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption spectroscopy, scanning tunneling microscopy, and low energy electron diffraction. It is demonstrated that highly ordered monolayer films are formed upon immersion, but their quality depends critically on the choice of solvents and rinsing conditions. The saturated monolayer is characterized by a closed packed arrangement of upright standing molecules forming a (2 x 4)rect unit cell. At about 450 K a partial desorption takes place and the remaining molecules form a dilute (4 x 2)-phase with an almost planar adsorption geometry, while further heating above 520 K causes a thermally induced fragmentation. According to their different densities both phases reveal very diverse chemical reactivities. Whereas the saturated monolayer is stable and inert under ambient conditions, the dilute phase does not warrant any protection of the sulfur headgroups which oxidize rapidly in air.  相似文献   

6.
With the aim of investigating the effect of the surface properties on the friction behavior of self-assembled monolayers, we have modified tipless atomic force microscopy (AFM) cantilevers with a poly(dimethylsiloxane) (PDMS) lens. The friction coefficient using the silicon tip is strongly influenced by the mechanical properties of the substrate monolayer because hard, sharp silicon tips penetrate the surface of organic monolayers. However, the friction coefficient obtained for the PDMS-modified AFM cantilever is mostly due to the surface properties of the monolayer functional end group, rather than the viscoelastic deformation of the monolayer. The use of the PDMS tip was demonstrated as a novel means to investigate the effect of surface properties on the frictional behavior of self-assembled monolayers with various functional groups with less mechanical deformation.  相似文献   

7.
Raman scattering signals recorded by microscopy from organic self-assembled monolayers (thin nanometric films of calibrated thickness) on silica substrates were found to be much stronger than those obtained from identical films assembled on bulk silicon substrates. This effect, observed in the backscattering geometry, is shown to result from interferences between the direct and reflected beams (including both the excitation and scattered radiation) in front of a smooth reflecting surface. Strong dependence of the effect on the distance between the sampled monolayer and the bulk silicon substrate allows enhancement of the Raman signals of organic monolayer films on silicon by factors up to approximately 70 by using appropriate silica spacers. The dependence of the Raman signal intensity on film thickness was also studied for thicker nanometric films comprising a series of self-assembled organosilane multilayers on bulk silicon and fused silica substrates, and the predicted deviation from linearity in the case of the silicon substrate is experimentally confirmed.  相似文献   

8.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

9.
Supported lipid films are becoming increasingly important tools for the study of membrane protein function because of the availability of high-sensitivity surface analytical and patterning techniques. In this study, we have characterized the physical chemical properties of lipid films assembled on hydrophobic surfaces through the spontaneous adsorption of large unilamellar lipid vesicles composed of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC). The density of the lipid films was measured with surface plasmon resonance spectroscopy as the lipid composition of the vesicles and ionic concentration were varied. As expected, monolayer films were formed, but the density of the monolayers was found to be weakly dependent on the lipid composition of the vesicles and strongly dependent on the ionic concentration of the solution in contact with the monolayer. Atomic force microscopy (AFM) images of the lipid films indicate that they are composed of a homogeneous monolayer. Surface force measurements were used to determine the surface charge and DOPG density of the monolayers. The DOPG content of the films was found to be weakly dependent on the DOPG composition of the vesicles and strongly dependent on the salt concentration of the environment. A model has been developed to describe the behavior of the lipid composition of the films in terms of the hydrophobic, electrostatic, and steric forces acting on the lipid monolayer on the hydrophobic surface.  相似文献   

10.
We performed density functional theory calculations of the atomic and electronic structure of a dense monolayer of phenyl-terminated alkyl chains chemisorbed onto the (100) Si surface. Different adsorption sites were characterized for both the pristine and (2 x 1) reconstructed surface. A strong effect on the ordering and alignment of the molecular energy levels with respect to the Fermi level of silicon is observed, consequent to intermolecular screening in the monolayer and of the appearance of surface localized states, as a function of the different bonding arrangements. Some possible consequences of these findings are discussed in the framework of the experimental synthesis of such monolayers as molecular current rectifiers in silicon-integrated nanoscale electronics.  相似文献   

11.
Self-assembled monolayers (SAMs) of N-(3-triethoxysilylpropyl)-4-hydroxybutyramide were prepared on silicon oxide on silicon (Si/SiO(2)). Initial silane adsorption and high-temperature annealing led to a stable base monolayer with many large over-lying islands of disordered multilayers as a result of the non-self-limited growth process. The disordered multilayers were hydrolyzed and subsequently removed by CO(2) snow treatment. The resulting films were one monolayer thick as measured by ellipsometry. Atomic force microscopy, attenuated total reflection Fourier transform infrared spectroscopy, and contact angle analysis showed that the films were composed of monolayers with full and uniform surface coverage rather than nonuniform coverage by islands or patches of multilayers. Monolayers of octadecyltrichlorosilane were also prepared by multilayer removal via CO(2) treatment, showing the general applicability of the technique toward siloxane SAMs. We believe that CO(2) is an excellent solvent for weakly bound and hydrolyzed molecules that compose multilayers, and this ability to prepare near-perfect monolayer films from imperfect ones allows for less stringent formation conditions.  相似文献   

12.
The adsorption of DNA on chemically homogeneous, functionalized, oxide-free single-crystal silicon surfaces is studied by x-ray reflectivity. The adsorption of monodisperse, 294 base-pair double-stranded DNA on a positively charged surface is detected through the deformation of the molecular monolayer of aminated alkyl-chain molecules covalently bonded to the surface. The adsorption of single-stranded DNA does not lead to the same deformation. A detailed quantitative characterization of the density profiles yield surface densities of the covalently grafted, molecular monolayers that are in excellent agreement with infrared spectroscopic measurements. The additional mass density that is measured following the adsorption of DNA corresponds either to the partial embedding of a densely-packed adsorbed layer or to a deeper penetration into the soft surface layer at a lower surface density of the adsorbed double-stranded DNA molecules. The adsorption is found to be irreversible under high added salt concentrations, suggesting a partial dehydration of the double-stranded DNA.  相似文献   

13.
Experiments have shown that a Pd monolayer deposited electrochemically on a Au-supported self-assembled monolayer (SAM) of 4-mercaptopyridine (Mpy) exhibits a strongly reduced Pd local density of states (LDOS) at the Fermi energy (E(f)). Understanding the origin of this modified electronic structure is crucial for the use of the sandwich design as a platform for future nanoelectronics. Here we suggest that hydrogen adsorption might be the origin of the modified electronic properties. We performed periodic density functional theory calculation to explore the influence of hydrogen adsorption on the geometric and electronic structure of a Pd/Mpy/Au(111) complex. Dissociative adsorption of H(2) on a Pd monolayer on top of a Mpy SAM is a strongly exothermic process leading to atomic hydrogen atoms preferentially located at the hollow sites. Due to the formation of a strong Pd-H bond the Pd-SAM interaction realized via one-fold N-Pd bonds is substantially weakened. Upon hydrogen adsorption, the Pd LDOS becomes significantly modified exhibiting a drastic reduction of the density of states at E(f). The calculated spectra are in a good agreement with the experiment for a hydrogen coverage corresponding to two monolayers which is still thermodynamically allowed.  相似文献   

14.
Orientational correlations in Langmuir monolayers of nematic and smectic-C liquid crystal (LC) phases are investigated by molecular dynamics simulation. In both phases, the orientational correlation functions decay algebraically yet with the different exponents of 1.9 and 0.2 for the nematic and the smectic-C monolayers, respectively. The power law decay, i.e., the absence of long-range orientational order, means the both monolayers should be the ideal 2D system with a continuous symmetry, whereas the large difference in the exponents of power law gives rise to the crucial difference in their optical properties; the nematic monolayer is optically isotropic while the smectic-C monolayer exhibits an anisotropy on the length scale of visible light. Since the exponent is inversely proportional to the molecular exchange energy, the averaged molecular interaction in the nematic monolayer should be an order of magnitude smaller than that in the smectic-C monolayer, which is ascribed to the low molecular density and the weak molecular dipole due to the water molecule. The relation between the molecular interaction and the orientational correlation calculated for the 2D LC system offers much information not only about the 2D LCs but also on the bulk system.  相似文献   

15.
The adsorption properties of thermosensitive graft-copolymers are investigated with the aim of developing self-assembled multilayers from these copolymers. The copolymers consist of a thermoreversible main chain of poly(N-isopropylacrylamid) and a weak polyelectrolyte, poly(2-vinylpyridine), as grafted side chains. Zeta-potential, single particle light scattering and adsorption isotherms monitor the adsorption of the thermoreversible copolymers to precoated colloidal particles. The results show a smaller surface coverage for a larger density of grafted chains. The surface coverage is discussed in terms of surface charge density in the adsorbed monolayer. Taking into account the monolayer adsorption properties, conditions are developed for the multilayer formation from these copolymers. A low pH provides a sufficient charge density of the grafted chains to achieve a surface charge reversal of the colloids upon adsorption. The charge reversal after each adsorbed layer is monitored by zeta-potential and the increase of the thickness is determined by light scattering. Stable and reproducible multilayers are obtained. The results imply that the conformation of the thermosensitive component in multilayers depends strongly on the grafting density, where the polymer with a higher grafting density adsorbs in a flat conformation while that with a lower grafting density adsorbs with more loops.  相似文献   

16.
Redox-active molecules that afford high charge density upon attachment to an electroactive surface are of interest for use in molecular-based information-storage applications. One strategy for increasing charge density is to covalently link a second redox center to the first in an architecture that uses the vertical dimension in essentially the same molecular footprint. Toward this end, a set of four new porphyrin dyads have been prepared and characterized. Each dyad consists of two zinc porphyrins, an intervening linker (p-phenylene or 4,4'-diphenylethyne), and a surface attachment group (ethynyl or triallyl group). The porphyrin dyads were attached to an electroactive Si(100) surface and interrogated via electrochemical and FTIR techniques. The charge density obtainable for the ethynyl-functionalized porphyrin dyads is approximately double that observed for an analogously functionalized monomer, whereas that for the triallyl-functionalized dyads is at most 40% larger. These results indicate that the molecular footprint of the former dyads is similar to that of a monomer while that of the latter dyads is larger. For both the ethynyl- and triallyl-functionalized porphyrin dyads, higher charge densities (smaller molecular footprints) are obtained for the molecules containing the 4,4'-diphenylethyne versus the p-phenylene linker. This feature is attributed to the enhanced torsional flexibility of the former linker compared with that of the latter, which affords better packed monolayers. The FTIR studies indicate that the adsorption geometry of all the dyads is qualitatively similar and similar to that of monomers. However, the dyads containing the 4,4'-diphenylethyne linker sit somewhat more upright on the surface than those containing the p-phenylene linker, generally consistent with the smaller molecular footprint for the former dyads. Collectively, the high surface charge density (34-58 muC.cm(-)(2)) of the porphyrin dyads makes these constructs viable candidates for molecular-information-storage applications.  相似文献   

17.
A statistical mechanical model that treats hydrocarbon self-assembled monolayer (SAM) chains as rigid rods is examined to interrogate the mechanisms involved in monolayer ordering. The statistical mechanical predictions are compared to fully atomistic molecular dynamics simulations of SAMs with different packing densities. The monolayer chain order is examined as a function of surface coverage, chain-surface interactions, and chain–chain interactions. Reasonable interaction potentials are deduced from ab initio electronic structure calculations of small model systems. It is found that the chain-surface interaction is the most important parameter in formation of flat-lying monolayer phases, while formation of standing phase monolayers is driven most importantly by increased density of molecules at the surface. A brief discussion of the utility and validity of the rigid rod treatment is given in light of the molecular dynamics results.  相似文献   

18.
The adsorption of CO2 gas on the MgO (100) crystal surface is investigated using grand canonical Monte Carlo simulations. This allows us to obtain adsorption isotherms that can be compared with experiment, as well as to explore the possible formation of monolayers of different densities. Our model calculations agree reasonably well with the available experimental results. We find a "low-density" adsorbed monolayer where each CO2 molecule is bound to two Mg2+ ions on the MgO substrate. We also observe the formation of monolayers of higher density, where some of the CO2 molecules have rotated and tilted to expose additional binding sites. Low-temperature simulations of both the low- and high-density monolayers reveal that these states are very close in energy, with binding energies of approximately 7 kcal/mol at T=5 K. The high-density monolayer given by our model has a density that is significantly less than the reported experimental value. We discuss this discrepancy and offer suggestions for resolving it.  相似文献   

19.
We studied the adsorption of gamma-Fe 2O 3 nanoparticles from an aqueous solution under different charged Langmuir monolayers (stearic acid, stearyl alcohol, and stearyl amine). The aqueous subphase was composed of a colloidal suspension of gamma-Fe 2O 3 nanoparticles. The average hydrodynamic diameter of the nanoparticles measured by dynamic light scattering measurements was 16 nm. The observed zeta potential of +40 mV (at pH 4) results in a long-term stability of the colloidal dispersion. The behavior of the different monolayer/nanoparticle composites were studied with surface pressure/area (pi/ A) isotherms. The adsorption of the nanoparticles under the different monolayers induced an expansion of the monolayers. These phenomena depended on the charge of the monolayers. After the Langmuir/Blodgett transfer on glass substrates, the nanoparticle/monolayer composite films were studied by means of UV-vis spectroscopy. The spectra pointed to increasing adsorption of the nanoparticles with increasing electronegativity of the monolayers. On the basis of these results, we studied the in situ adsorption of nanoparticles under the different monolayers by X-ray reflectivity measurements. Electron density profiles of the liquid/gas interfaces were obtained from the X-ray reflectivity data. The results gave clear evidence for the presence of electrostatic interaction between the differently charged monolayers and the positively charged nanoparticles. While the adsorption process was favored by the negatively charged stearic acid monolayer, the positively charged layer of stearyl amine prevented the formation of ultrathin nanoparticle layers.  相似文献   

20.
This study investigates the formation of low-density, flat-lying decanethiol chemisorbed on Au prepared by heating the surface covered with a densely packed, upright monolayer to a surface temperature above that of the onset of desorption. We determined conditions for preparing the low-density phase by observing the evolution of the photoemission spectrum as a function of the surface temperature using polarized ultraviolet light and by utilizing scanning tunneling microscopy. The preparation conditions were similar for single- and polycrystalline gold surfaces. Once the low-density decanethiol phase was formed, reflection absorption infrared spectroscopy was employed to determine the orientation of the carbon chain backbone with respect to the Au surface. The nature of the valance electronic structure for flat-lying decanethiol is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号