首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A number of framework amides with a ginsenol backbone have been synthesized using the Ritter reaction. We named the acetamide as Ginsamide. A method was developed for the synthesis of the corresponding amine and thioacetamide. The new compounds revealed a high activity against H1N1 influenza, which was confirmed using an animal model. Biological experiments were performed to determine the mechanism of action of the new agents, a ginsamide-resistant strain of influenza virus was obtained, and the pathogenicity of the resistant strain and the control strain was studied. It was shown that the emergence of resistance to Ginsamide was accompanied by a reduction in the pathogenicity of the influenza virus.  相似文献   

2.
Indoles constitute a large family of heterocyclic compounds widely occurring in nature which are present in a number of bioactive natural and synthetic compounds, including anticancer agents or atypical opioid agonists. As a result, exponential increases in the development of novel methods for the synthesis of indole-containing compounds have been reported in the literature. A series of indole-aryl amide derivatives 1–7 containing tryptamine or an indolylacetic acid nucleus were designed, synthesized, and evaluated as opioid ligands. These new indole derivatives showed negligible to very low affinity for μ- and δ-opioid receptor (OR). On the other hand, compounds 2, 5 and 7 showed Ki values in the low μM range for κ-OR. Since indoles are well known for their anticancer potential, their effect against a panel of tumor cell lines was tested. The target compounds were evaluated for their in vitro cytotoxicity in HT29, HeLa, IGROV-1, MCF7, PC-3, and Jurkat J6 cells. Some of the synthesized compounds showed good activity against the selected tumor cell lines, with the exception of IGROV1. In particular, compound 5 showed a noteworthy selectivity towards HT29 cells, a malignant colonic cell line, without affecting healthy human intestinal cells. Further studies revealed that 5 caused the cell cycle arrest in the G1 phase and promoted apoptosis in HT29 cells.  相似文献   

3.
Abstract

The reaction of 5-(2-methylthio)phenyl-1,2,4-triazole-3-thiol with glucosyl, galactosyl, lactosyl bromide, and peracetylated ribose under the conventional and microwave irradiation methods afforded the corresponding S-glycosides. Deacetylation of S-glycosides gave the corresponding deacetylated derivatives. Reaction of 5-(2-methylthio)phenyl-1,2,4-triazole-3-thiol with 4-acetoxybutyl bromide, 2-acetoxyethoxymethyl bromide, 3-chloropropanol, 1,3-dichloroopropan-2-ol, epichlorohydrin, allyl bromide, and propargayl bromide gave the corresponding S-acyclonucleosides, which were deacetylated to give the corresponding deacetylated compounds. All the newly synthesized compounds were characterized by the IR, 1H, 13C NMR, and elemental analyses. Some of these compounds were screened for their antiviral and antimicrobial activity.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the related elements to view the free supplemental file.  相似文献   

4.
三氮唑核苷及衍生物的设计合成与生物活性研究   总被引:1,自引:0,他引:1  
李清寒  李子成  陈淑华  蒋宁 《有机化学》2004,24(11):1432-1435
以四乙酰核糖、1,2,4-三氮唑-3-羧酸甲酯为原料,经过缩合、氨解、保护、亲核取代、水解等五步反应得到4个新的三氮唑核苷衍生物4a~4d,所有目标化合物的化学结构均经核磁共振氢谱、质谱或(和)元素分析所确正.通过体外抗病毒活性测试表明,四个目标化合物中有两个对流感甲型病毒具有一定的抑制作用.  相似文献   

5.
The treatment of viral disease has become a medical challenge because of the increasing incidence and prevalence of human viral pathogens, as well as the lack of viable treatment alternatives, including plant-derived strategies. This review attempts to investigate the trends of research on in vitro antiviral effects of curcumin against different classes of human viral pathogens worldwide. Various electronic databases, including PubMed, Scopus, Web of Science, and Google Scholar were searched for published English articles evaluating the anti-viral activity of curcumin. Data were then extracted and analyzed. The forty-three studies (published from 1993 to 2020) that were identified contain data for 24 different viruses. The 50% cytotoxic concentration (CC50), 50% effective/inhibitory concentration (EC50/IC50), and stimulation index (SI) parameters showed that curcumin had antiviral activity against viruses causing diseases in humans. Data presented in this review highlight the potential antiviral applications of curcumin and open new avenues for further experiments on the clinical applications of curcumin and its derivatives.  相似文献   

6.
The COVID-19 pandemic is ongoing as of mid-2022 and requires the development of new therapeutic drugs, because the existing clinically approved drugs are limited. In this work, seven derivatives of epoxybenzooxocinopyridine were synthesized and tested for the ability to inhibit the replication of the SARS-CoV-2 virus in cell cultures. Among the described compounds, six were not able to suppress the SARS-CoV-2 virus’ replication. One compound, which is a derivative of epoxybenzooxocinopyridine with an attached side group of 3,4-dihydroquinoxalin-2-one, demonstrated antiviral activity comparable to that of one pharmaceutical drug. The described compound is a prospective lead substance, because the half-maximal effective concentration is 2.23 μg/μL, which is within a pharmacologically achievable range.  相似文献   

7.
An environmentally benign method has been developed for the synthesis of novel chiral thiourea derivatives in high yields in ionic liquid [Bmim]PF6. The ionic solvent can be recovered and reused without any loss of its activity. The target compounds were characterized by elemental analysis, IR, 1H NMR and 13C NMR spectral data. According to the preliminary bioassay, some of the chiral thiourea analogues exhibited moderate in vivo antiviral activities against TMV at a concentration of 500 mg/L. Title chiral compound 3i was found to possess good in vivo protection, inactivation and curative activities of 57.0%, 96.4% and 55.0%, respectively against TMV with an inhibitory concentration at 500 mg/L. The title chiral compound 3i revealed better inactivation effect on TMV (EC50=50.8 µg/mL) than Ningnanmycin (EC50=60.2 µg/mL).  相似文献   

8.
When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502–8 μM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9–27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.  相似文献   

9.
燕子红  蔡岩  丁晓丽  苗志伟 《化学通报》2018,81(11):1015-1022
小分子化合物Nucleozin作为靶向流感病毒核蛋白的抑制剂具有良好的抑制活性。本文围绕Nucleozin分子中与哌嗪环直接相连的芳环部分进行研究。通过钯催化偶联反应合成了一系列Nucleozin衍生物,通过检测所合成化合物对流感病毒H1N1的抑制活性,明确了Nucleozin分子中该部分的构效关系。利用甲基在药物分子设计中的作用,设计将分子中的氯原子替换为甲基,发现与原型分子Nucleozin相比其抑制活性有了明显的提高。本文的结果对该类分子成药性的提高具有积极意义。  相似文献   

10.
Natural products are a source for pesticide or drug discovery. In order to discover lead compounds with high fungicidal or herbicidal activity, new niacinamide derivatives derived from the natural product niacinamide, containing chiral flexible chains, were designed and synthesized. Their structures were confirmed by 1H NMR, 13C NMR and HRMS analysis. The fungicidal and herbicidal activities of these compounds were tested. The fungicidal activity results demonstrated that the compound (S)-2-(2-chloronicotinamido)propyl-2-methylbenzoate (3i) exhibited good fungicidal activity (92.3% inhibition) against the plant pathogen Botryosphaeria berengriana at 50 μg/mL and with an EC50 of 6.68 ± 0.72 μg/mL, which is the same as the positive control (fluxapyroxad). Compound 3i was not phytotoxic and could therefore be used as a fungicide on crops. Structure-activity relationships (SAR) were studied by molecular docking simulations with the succinate dehydrogenase of the fungal mitochondrial respiratory chain.  相似文献   

11.
Curcumin is a natural compound that has many medical applications. However, its low solubility and poor stability could impede its clinical applications. The present study aimed to formulate dry proniosomes to overcome these pitfalls and improve the therapeutic efficacy of Curcumin. Curcumin-loaded proniosomes were fabricated by the slurry method according to 32 factorial design using Design-Expert software to demonstrate the impact of different independent variables on entrapment efficiency (EE%) and % drug released after 12 h (Q12h). The optimized formula (F5) was selected according to the desirability criteria. F5 exhibited good flowability and appeared, after reconstitution, as spherical nanovesicles with EE% of 89.94 ± 2.31% and Q12h of 70.89 ± 1.62%. F5 demonstrated higher stability and a significant enhancement of Q12h than the corresponding niosomes. The docking study investigated the ability of Curcumin to bind effectively with the active site of DNA polymerase of Herpes simplex virus (HSV). The antiviral activity and the safety of F5 were significantly higher than Curcumin. F5 improved the safety of Acyclovir (ACV) and reduced its effective dose that produced a 100% reduction of viral plaques. Proniosomes could be promising stable carriers of Curcumin to be used as a safe and efficient antiviral agent.  相似文献   

12.
Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses.  相似文献   

13.
New isoconessimine derivatives were synthesized from conessine (1) and evaluated as acetylcholinesterase (ACHE) inhibitors. The derivatives were prepared via two reaction steps, N-demethylation and nuc]eophilic substi- tution. All of the synthesized derivatives exhibited more potential anti-acetylcholinesterase activities than conessine (1) (IC50=16μmol·L^-1) and isoconessimine (2) (IC50〉300 μmol·L ^-1). Compound 7b (3fl-[methyl-[2-(4-nitro- phenoxy)ethyl]amino]con-5-enine) showed the most potent inhibitory activity with an IC50 of 110 μmol/L which is close to that of reference compound huperzine A (IC50= 70 μmol/L). The mode of AChE inhibition by 7h was re- versible and non-competitive. In addition, molecular modeling was performed to explore the binding mode of in- hibitor 7b at the active site of AChE and the results showed that 7b could be docked into the acetylcholinesterase active site and compound 7h had hydrophobic interactions with Trp279 and Leu282.  相似文献   

14.
The current COVID-19 outbreak has highlighted the need for the development of new vaccines and drugs to combat Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Recently, various drugs have been proposed as potentially effective against COVID-19, such as remdesivir, infliximab and imatinib. Natural plants have been used as an alternative source of drugs for thousands of years, and some of them are effective for the treatment of various viral diseases. Emodin (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a biologically active anthraquinone with antiviral activity that is found in various plants. We studied the selectivity of electrophilic aromatic substitution reactions on an emodin core (halogenation, nitration and sulfonation), which resulted in a library of emodin derivatives. The main aim of this work was to carry out an initial evaluation of the potential to improve the activity of emodin against human coronavirus NL63 (HCoV-NL63) and also to generate a set of initial SAR guidelines. We have prepared emodin derivatives which displayed significant anti-HCoV-NL63 activity. We observed that halogenation of emodin can improve its antiviral activity. The most active compound in this study was the iodinated emodin analogue E_3I, whose anti-HCoV-NL63 activity was comparable to that of remdesivir. Evaluation of the emodin analogues also revealed some unwanted toxicity to Vero cells. Since new synthetic routes are now available that allow modification of the emodin structure, it is reasonable to expect that analogues with significantly improved anti-HCoV-NL63 activity and lowered toxicity may thus be generated.  相似文献   

15.
A series of oxazinyl flavonoids were synthesized on the basis of flavone. The structures of all target compounds were characterized by 1H NMR, 13C NMR, and HRMS. The effect of the different substituent on the N-position of oxazinyl flavonoids against tobacco mosaic virus (TMV) activities and plant pathogen activities was systematically investigated. In vivo anti-TMV activity showed that most of the compounds showed moderate-to-excellent antiviral activities against TMV at 500 μg/mL. Compounds 6b, 6d, 6j–6k, and 6n–6q showed better antiviral activities than ribavirin (a commercially available antiviral agent) and apigenin. In particular, compounds 6n and 6p even displayed slightly higher activities than ningnanmycin, which were expected to become new antiviral candidates. Antiviral mechanism research by molecular docking exhibited that compounds 6n and 6p could interact with TMV CP and inhibit virus assembly. Then, the antifungal activities of these compounds against six kinds of plant pathogenic fungi were tested, and the results showed that these oxazinyl flavonoids had broad-spectrum fungicidal activities. Compounds 6h exhibited antifungal activity of up to 91% against Physalospora piricola and might become a candidate drug for new fungicides.  相似文献   

16.
Chen  L.  Obul  M.  Bozorov  Kh.  Zhao  J. 《Chemistry of Natural Compounds》2021,57(5):854-860
Chemistry of Natural Compounds - A series of 20 new derivatives of rupestonic acid were synthesized via Davis oxidation. Their antiviral activity against influenza A virus (H3N2) was established....  相似文献   

17.
18.
A new and suitable multicomponent one-pot reaction was developed for the synthesis of 2-amino-3-cyanopyridine derivatives. Background: This synthesis was demonstrated by the efficient and easy access to a variety of substituted 2-aminopyridines using enaminones as key precursors under solvent-free conditions. Methods: A range of spectroscopic techniques was used to determine and confirm the chemical structures (FTIR, 1H NMR, 13C NMR). The antimicrobial potency of synthesized compounds (2a–d) was tested using disk diffusion assays, and the Minimum Inhibitory Concentration (MIC) for the active compounds was determined against a panel of microorganisms, including Gram-positive and Gram-negative bacteria and yeasts. Moreover, a docking analysis was conducted by Molecular Operating Environment (MOE) software to provide supplementary information about the potential, as well as an ADME-T prediction to describe the pharmacokinetic properties of the best compound and its toxicity. Results: The results of the antimicrobial activity indicated that compound 2c showed the highest activity against Gram-positive bacteria, particularly S. aureus and B. subtilis whose MIC values were 0.039 ± 0.000 µg·mL−1. The results of the theoretical study of compound 2c were in line with the experimental data and exhibited excellent antibacterial potential. Conclusions: On the basis of the obtained results, compound 2c can be used as an antibacterial agent model with high antibacterial potency.  相似文献   

19.
We synthesized a series of quinazolinone derivates as tyrosinase inhibitors and evaluated their inhibition constants. We synthesized 2-(2,6-dimethylhepta-1,5-dien-1-yl)quinazolin-4(3H)-one (Q1) from the natural citral. The concentration, which led to 50% activity loss of Q1, was 103 ± 2 μM (IC50 = 103 ± 2 μM). Furthermore, we considered Q1 to be a mixed-type and reversible tyrosinase inhibitor, and determined the KI and KIS inhibition constants to be 117.07 μM and 423.63 μM, respectively. Our fluorescence experiment revealed that Q1 could interact with the substrates of tyrosine and L-DOPA in addition to tyrosinase. Molecular docking studies showed that the binding of Q1 to tyrosinase was driven by hydrogen bonding and hydrophobicity. Briefly, the current study confirmed a new tyrosinase inhibitor, which is expected to be developed into a novel pigmentation drug.  相似文献   

20.
New 20-oxo- and hydroxyimino-derivatives of betulin that exhibit immunotropic and antiviral activities were synthesized. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 582–584, November–December, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号