首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 679 毫秒
1.
Hierarchical supramolecular chiral liquid-crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization-induced chiral self-assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene-containing block copolymer (Azo-BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo-BCP assemblies. The supramolecular chirality of Azo-BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

2.
Hierarchical supramolecular chiral liquid‐crystalline (LC) polymer assemblies are challenging to construct in situ in a controlled manner. Now, polymerization‐induced chiral self‐assembly (PICSA) is reported. Hierarchical supramolecular chiral azobenzene‐containing block copolymer (Azo‐BCP) assemblies were constructed with π–π stacking interactions occurring in the layered structure of Azo smectic phases. The evolution of chirality from terminal alkyl chain to Azo mesogen building blocks and further induction of supramolecular chirality in LC BCP assemblies during PICSA is achieved. Morphologies such as spheres, worms, helical fibers, lamellae, and vesicles were observed. The morphological transition had a crucial effect on the chiral expression of Azo‐BCP assemblies. The supramolecular chirality of Azo‐BCP assemblies destroyed by 365 nm UV irradiation can be recovered by heating–cooling treatment; this dynamic reversible achiral–chiral switching can be repeated at least five times.  相似文献   

3.
Polymerization-induced chiral self-assembly(PICSA)is an efficient strategy that not only allows the construction of the supramolecular chiral assemblies in a controlled manner but also can regulate the morphology in situ.Herein,a series of azobenzene-containing block copolymer(Azo-BCP)assemblies with tunable morphologies and supramolecular chirality were obtained through the PICSA strategy.The supramolecular chirality of Azo-BCP assemblies could be regulated by carbon dioxide(CO2)stimulus,and completely recovered by bubbling with Ar.A reversible morphology transformation and chiroptical switching process could also be achieved by the alternative 365 nm UV light irradiation and heatingcooling treatment.Moreover,the supramolecular chirality is thermo-responsive and a reversible chiral-achiral switching was successfully realized,which can be reversibly repeated for at least five times.This work provides a feasible strategy for constructing triple stimuli-responsive supramolecular chiral nano-objects in situ.  相似文献   

4.
Chirality transfer from chiral molecules to assemblies is of vital importance to the design of functional chiral materials. In this work, selective co-assembly behaviors between chiral molecules and an achiral luminophore, potentially driven by the intermolecular salt-bridge type hydrogen bonds are reported. Cyano-substituted tetrakis(arylthio)benzene carboxylic acid ( TA ) served as the luminophore and hydrogen bond donors, which underwent co-assembly with different chiral amines. It was found that structures of chiral amines affect the chirality transfer and the properties of co-assemblies due to effects on hydrogen bonds and stacking pattern. Only in specific co-assemblies, the chiroptical properties occurred at both ground state and excited states based on the emerged Cotton effects and circularly polarized luminescence (CPL) signals, revealing that the chirality was successfully transferred from molecular level to supramolecular level. In addition, accurate quantitative examination of chiral amines was realized by circular dichroism (CD) spectra. This work demonstrates the characteristic chirality response and transfer through co-assembly, providing a potential method to develop smart chiroptical materials.  相似文献   

5.
Banded spherulites are formed by crystallization of a chiral polymer that is end‐capped with chromophore. Induced circular dichroism (ICD) of the chromophore can be found in the crystallized chiral polymers, giving exclusive optical response of the ICD. The ICD signals are presumed to be driven by the lamellar twisting in the crystalline spherulites, and the exclusive optical activity is attributed to the chirality transfer from molecular level to macroscopic level. To verify the suggested mechanism, the sense of the lamellar twisting in the crystalline spherulite is determined using PLM for the comparison with the ICD signals of the chromophore in the electron circular dichroism spectrum. The conformational chirality of the chiral polymer is determined by the vibrational circular dichroism spectrum. On the basis of the chiroptical results, evolution of homochirality from helical polymer chains (conformational chirality) to lamellar twisting in the banded spherulite (hierachical chirality) is suggested.  相似文献   

6.
Antipodal twisted helical ribbons with lamellar bilayer structure were obtained by self-assembly of chiral amphiphilic molecules in water and water/ethanol. The handedness inversion of the molecular arrangement in these antipodal helical ribbons was investigated by using chiroptical spectroscopy and molecular probes in their antipodal mesoporous silica assemblies synthesized through pairing interaction between the head group of the chiral amphiphilic molecules and a co-structure-directing agent. The supramolecular chirality is imprinted in the pore surface through the organic group of the co-structure-directing agent. The mirror-image diffuse-reflectance circular dichroism spectra of the conjugated discotic probing molecule introduced into their supramolecular chiral imprinted mesoporous silica demonstrated the origin of inverse chirality from the antipodal helical stacking of the molecules.  相似文献   

7.
Using green chemistry to control chirality at hierarchical levels as well as chiroptical activities endows with new opportunities to the development of multiple functions. Here, the four-component Ugi reaction is introduced for the general and precise optical chirality sensing of amines as well as the surface nanoengineering of chiral soft self-assemblies. To overcome the relatively weak Cotton effects, direct synthesis of a folded peptide structure on a rotatable ferrocene core with axial chirality was accomplished from chiral amine, 1,1’-ferrocenyl dicarboxylic acid, formaldehyde and isocyanide. Enhanced Cotton effects benefiting from the folded structure allow for the precise and quantitative sensing of natural and synthetic chiral amines covering alkyl, aromatic amines and amino acid derivatives. In addition, aqueous reaction enables the modification of amine-bearing dye to microfibers self-assembled from π-conjugated amino acids. Surface dye-modification via Ugi reaction barely changes the pristine morphology, showing non-invasive properties in contrast to dye staining, which is applicable in soft nano/microarchitectures from self-assembly. This work which combines the four-component Ugi reaction to enable precise ee% detection and surface nanoengineering of soft chiral assemblies sheds light on the advanced application of green chemistry to chirality science.  相似文献   

8.
9.
Carotenoid microcrystals, extracted from cells of carrot roots and consisting of 95 % of achiral β‐carotene, exhibit a very intense chiroptical (ECD and ROA) signal. The preferential chirality of crystalline aggregates that consist mostly of achiral building blocks is a newly observed phenomenon in nature, and may be related to asymmetric information transfer from the chiral seeds (small amount of α‐carotene or lutein) present in carrot cells. To confirm this hypothesis, we synthesized several model aggregates from various achiral and chiral carotenoids. Because of the sergeant‐and‐soldier behavior, a small number of chiral sergeants (α‐carotene or astaxanthin) force the achiral soldier molecules (β‐ or 11,11′‐[D2]‐β‐carotene) to jointly form supramolecular assemblies of induced chirality. The chiral amplification observed in these model systems confirmed that chiral microcrystals appearing in nature might consist predominantly of achiral building blocks and their supramolecular chirality might result from the co‐crystallization of chiral and achiral analogues.  相似文献   

10.
为了深入理解乙烯基二联苯单体自由基聚合过程中的手性传递,进行了手性单体(+)-2-[(S)-异丁氧羰基-5-(4′-己氧基苯基)苯乙烯、非手性单体2-丁氧羰基-5-(4′-己氧基苯基)苯乙烯的均聚反应及它们二者的共聚反应,探讨了聚合温度和溶剂性质对手性单体均聚物旋光活性、手性单体含量对共聚物旋光活性以及聚合反应溶剂的超分子手性对共聚物旋光活性的影响.研究发现,降低聚合温度、采用液晶性反应介质有利于得到旋光度大的聚合物;少量手性单体的引入即可诱导共聚物形成某一方向占优的螺旋构象,比旋光度随手性单体的含量增加呈线性增长;在胆甾相液晶中制备的非手性单体聚合物不具有光学活性.这些结果表明,该类乙烯基二联苯聚合物具有动态螺旋构象,其光学活性主要依赖于主链的立构规整度和侧基不对称原子的手性.  相似文献   

11.
Chiroptical properties of two‐dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers ( Py3 ) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J‐band of the interacting pyrenes, is developed upon subtle vortexing (0.5 Hz, 30 rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter‐clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows.  相似文献   

12.
In this contribution,we utilized surface-initiated atom transfer radical polymerization (SI-ATRP) to prepare organic-inorganic hybrid core/shell silica nanoparticles (NPs),where silica particles acted as cores and polymeric shells (PAzoMA*) were attached to silica particles via covalent bond.Subsequently,chiroptical switch was successfully constructed on silica NPs surface taking advantage of supramolecular chiral self-assembly of the grafted side-chain Azo-containing polymer (PAzoMA*).We found that the supramolecular chirality was highly dependent on the molecular weight of grafted PAzoMA*.Meanwhile,the supramolecular chirality could be regulated using 365 nm UV light irradiation and heating-cooling treatment,and a reversible supramolecular chiroptical switch could be repeated for over five cycles on silica NPs surface.Moreover,when heated above the glass transition temperature (Tg) of PAzoMA*,the organic-inorganic hybrid nanoparticles (SiO2@PAzoMA*NPs) still exhibited intense DRCD signals.Interestingly,the supramolecular chirality could be retained in solid film for more than 3 months.To conclude,we have prepared an organic-inorganic hybrid core/shell chiral silica nanomaterial with dynamic reversible chirality,thermal stability and chiral storage functions,providing potential applications in dynamic asymmetric catalysis,chiral separation and so on.  相似文献   

13.
介绍了超分子手性的基本构筑方式及其特点,分别从手性分子组装、手性分子诱导非手性分子及非手性分子组装等3个方面对最近几年来在手性超分子组装领域内的重要成果及最新进展进行了综述,并对这一领域的发展前景作了展望。  相似文献   

14.
Supramolecular chirality, generated by the asymmetric assembly of chiral or achiral molecules, has attracted intense study owing to its potential to offer insights into natural biological structures and its crucial roles in advanced materials. The optical activity and stacking pathway of building molecules both greatly determine the chirality of the whole supramolecular structure. The flexibility of supramolecular structures makes their chirality easy to modulate through abundant means. Adjustment of the molecular structure or packing mode, or external stimuli that act like a finger gently pushing toy bricks, can greatly change the chirality of supramolecular assemblies. The dynamic regulation of chiral nanostructures on the intramolecular, intermolecular, and external levels could be regarded as the modulatory essence in numerous strategies, however, this perspective is ignored in most reviews in the literature. Herein, therefore, we focus on the ingenious dynamic modulation of chiral nanostructures by these factors. Through dynamic modulation with changes in chiroptical spectroscopy and electron microscopy, the mechanism of formation of supramolecular chirality is also elaborated.  相似文献   

15.
Circular dichroism is known to be the feature of a chiral agent which has inspired scientist to study the interesting phenomena of circularly polarized light (CPL) modulated molecular chirality. Although several organic molecules or assemblies have been found to be CPL‐responsive, the influence of CPL on the assembly of chiral coordination compounds remains unknown. Herein, a chiral coordination polymer, which is constructed from achiral agents, was used to study the CPL‐induced enantioselective synthesis. By irradiation with either left‐handed or right‐handed CPL during the reaction and crystallization, enantiomeric excesses of the crystalline product were obtained. Left‐handed CPL resulted in crystals with a left‐handed helical structure, and right‐handed CPL led to crystals with a right‐handed helical structure. It is exciting that the absolute asymmetric synthesis of a chiral coordination polymer could be enantioselective when using CPL, and provides a strategy for the control of the chirality of chiral coordination polymers.  相似文献   

16.
Pillar[n]arenes are symmetrical macrocyclic compounds composed of benzene panels with para-methylene linkages. Each panel usually exhibits planar chirality and prefers chirality-aligned states. Because of this feature, pillar[n]arenes are attractive scaffolds for chiroptical materials that are easy to prepare and optically resolve and show intense circular dichroism (CD) signals. In addition, rotation of the panels endows the chirality of pillar[n]arenes with a dynamic nature. The chirality in tubular oligomers and supramolecular assemblies sometimes show time- and procedure-dependent alignment phenomena. Furthermore, the CD signals of some pillar[n]arenes respond to the addition of chiral guests when their dynamic chirality is coupled with host–guest properties. By using diastereomeric pillar[n]arenes with additional chiral structures, the response can also be caused by achiral guests and changes of the environment, providing molecular sensors.  相似文献   

17.
A systematic study of the asymmetric cyclocopolymerization of bis(4‐vinylbenzoate)s, derived from chiral diols, with styrene has been made from the viewpoint of synthesizing the main‐chain chiral polymer. On the basis of using over 30 chiral diols as templates, we summarize the relationship between the structure of the chiral template and the chiroptical properties of the template‐free polymer. For simple chiral diols, the chirality induction efficiency increased in the order 1,2‐diol < 1,4‐diol < 1,3‐diol. Chiral diols with two chiral centers exhibited higher chirality induction efficiency than those having one chiral center only. The chirality induction efficiency for cyclic 1,2‐diols increased with the ring size in the order 5‐ < 6‐ < 7‐ < 8‐membered rings, and that for acyclic 1,2‐diols increased with the bulkiness of the substituent at the chiral center. In addition, a chirality induction mechanism has been proposed on the basis of model radical cyclization experiments and computational studies. Chirality induction could be caused by the inhibition of the formation of one racemo unit among the four stereoisomers due to the strong dependence of the stereoselectivity in intermolecular additions on the absolute configuration of the cyclized radical. The mechanism was examined using the Lewis‐acid and monomer‐concentration effects.  相似文献   

18.
The control of the chiroptical properties of two azopolymers, which contain chiral terminal alkyl chains, by means of thermal and light irradiation processes has been studied. Both UV–vis and CD spectra of films and dichloromethane (DCM)/hexane solutions of the polymers have been registered and analyzed before and after different irradiation conditions: 488 nm circularly polarized light (CPL) and 365 nm unpolarized light. The chiroptical properties of the polymer containing chiral 1-methylheptyloxy terminal chains depended on the thermal history of the sample. As a result, the photocontrol of the chiral response in the bulk material by CPL irradiation has been evaluated on samples cooled from the isotropic state to room temperature at different rates. The chiroptical properties of these azopolymers show an intriguing combination of control from both the supramolecular and molecular chirality level as well as the thermal history of the sample and CPL irradiation.  相似文献   

19.
Understanding the roles of various parameters in orchestrating the preferential chiral molecular organization in supramolecular self‐assembly processes is of great significance in designing novel molecular functional systems. Cyclic dipeptide (CDP) chiral auxiliary‐functionalized naphthalenediimides (NCDPs 1 – 6 ) have been prepared and their chiral self‐assembly properties have been investigated. Detailed photophysical and circular dichroism (CD) studies have unveiled the crucial role of the solvent in the chiral aggregation of these NCDPs. NCDPs 1 – 3 form supramolecular helical assemblies and exhibit remarkable chiroptical switching behaviour (M‐ to P‐type) depending on the solvent composition of HFIP and DMSO. The strong influence of solvent composition on the supramolecular chirality of NCDPs has been further corroborated by concentration and solid‐state thin‐film CD studies. The chiroptical switching between supramolecular aggregates of opposite helicity (M and P) has been found to be reversible, and can be achieved through cycles of solvent removal and redissolution in solvent mixtures of specific composition. The control molecular systems (NCDPs 4 – 6 ), with an achiral or D ‐isomer second amino acid in the CDP auxiliary, did not show chiral aggregation properties. The substantial roles of hydrogen bonding and π–π interactions in the assembly of the NCDPs have been validated through nuclear magnetic resonance (NMR), photophysical, and computational studies. Quantum chemical calculations at the ab initio, semiempirical, and density functional theory levels have been performed on model systems to understand the stabilities of the right (P‐) and left (M‐) handed helical supramolecular assemblies and the nature of the intermolecular interactions. This study emphasizes the role of CDP chiral auxiliaries on the solvent‐induced helical assembly and reversible chiroptical switching of naphthalenediimides.  相似文献   

20.
Deep eutectic solvents (DESs) show particular properties compared to ionic liquids and other traditional organic solvents. Controlled synthesis of chiral materials in DESs is unprecedented due to the complex interplays between DESs and solutes. In this work, all bio-derived chiral DESs were prepared using choline chloride or cyclodextrin as hydrogen bonding acceptors and natural chiral acids as donors, which performed as chiral matrices for the rational synthesis of chiroptical materials by taking advantage of the efficient chirality transfer between the DESs and solutes. In a very selective manner, building units with molecular pockets could facilitate strong binding affinity towards chiral acid components of DESs disregarding the presence of competitive hydrogen bonding acceptors. Chirality transfer from DESs to nanoassemblies leads to chirality amplification in the presence of minimal amounts of entrapped chiral acids, thanks to the spontaneous symmetry breaking of solutes during aggregation. This work utilizes chiral DESs to control supramolecular chirality, and illustrates the structural basis for the fabrication of DES-based chiral materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号