首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 188 毫秒
1.
Snake venoms contain a large number of biologically active substances and the venom components are very useful for pharmaceutical applications. Our goal is to separate and identify components of snake venoms in ten snake species from the Elapidae and Viperidae families using multidimensional chromatographic methods. The multidimensional chromatographic methods include reversed-phase high-performance liquid chromatography (RP-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip, two-dimensional electrophoresis (2-DE), and mass spectrometry. The venoms of eight snake species demonstrated major differences in hydrophobicity, molecular weight separations, and 2-DE protein distribution patterns. The 2-DE images showed major differences between families, within each family and even between the same species. Venoms of the Elapidae family showed many basic proteins with a wide range of molecular weights, while venoms of the Viperidae family showed wide ranges of pI and molecular weights, especially for Trimeresurus sp. The multidimensional chromatographic methods revealed specific differences in venom proteins intra-species as well as between species and families. We have isolated and identified proteins that may be unique for each species for further studies in the proteome of snake venoms and their potentially use in the pharmaceutical applications.  相似文献   

2.
Characterization of the peptide content in snake venoms can be an important tool for the investigation of new pharmacological lead compounds. For this purpose, single-step analysis of crude venoms has recently been demonstrated using mass spectrometry (MS) techniques. Reproducible profiles of ions in MS and MS/MS spectra may also be used to compare venoms from different species. In this work matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to obtain mass patterns of the major peptides (<8 kDa) found in pooled venoms from the genera Bothrops and Crotalus. Venoms from five different Bothrops species (B. jararaca, B. insularis, B. alternatus, B. jararacussu, and B. neuwiedi) and three Crotalus species (C. viridis, C. adamanteus and C. durissus terrificus) were analyzed. In agreement with other reports, venoms from Bothrops species contained a variety of peptides in the range m/z 1000-1500, and in some samples larger components (m/z 7000-8000) were detected. In the Crotalus species venoms were rich in peptides ranging from m/z 1000-1500 and 4000-5500. MS/MS experiments on the low molecular mass peptides (m/z 1000-1500) confirmed the presence of ten new bradykinin-potentiating peptides among venoms from genera Bothrops and Crotalus. In order to determine whether additional peptides could be identified after partial purification, B. jararaca venom was subjected to size-exclusion chromatography on Sephacryl S-200, and two distinct low molecular mass pools were analyzed further by MALDI-TOFMS. No additional peptides were detected from the pool with masses below 2000 Da but a substantial improvement with better resolution was observed for the pool with masses above 7000 Da, indicating that complex samples such as crude snake venoms can be analyzed for low molecular mass peptides using a single-step procedure.  相似文献   

3.
Electrospray mass spectrometry (ES/MS) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI/TOF/MS) were used to provide mass spectra from seven elapid snake venoms. Spectral interpretation was much simpler for MALDI/TOF/MS. ES/MS proved more useful for the provision of molecular weight data for very closely related peptides, but suppression of higher molecular weight compounds was seen to occur during flow injection analysis. MALDI/TOF/MS proved useful for providing a complete picture of the venom, but the low resolution led to obscuring of major ions, and the mass accuracy was poorer for known peptides. Suppression also occurred during MALDI/TOF/MS but could be overcome using alternative matrices because the spectra were very dependent on the choice of matrix. ES/MS and MALDI/TOF/MS provide complementary and confirmatory information such that for the anal sis of complex peptide mixtures (snake venoms), the use of both techniques is desirable.  相似文献   

4.
Variation in the snake venom proteome is well documented and it is a ubiquitous phenomenon at all taxonomical levels. However, variation in the snake venom peptidome is so far not described. In this work we used mass spectrometry [liquid chromatography/mass spectrometry (LC/MS) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOFMS)] to explore sex-based differences among the venom peptides of eighteen sibling specimens of Bothrops jararaca of a single litter born and raised in the laboratory. MALDI-TOFMS analyses showed individual variability among the bradykinin-potentiating peptides (BPPs), and, interestingly, four new peptides were detected only in female venoms and identified by de novo sequencing as cleaved BPPs lacking the C-terminal Q-I-P-P sequence. Similar results were obtained with venom from wild-caught adult non-sibling specimens of B. jararaca and in this case we were able to identify the gender of the specimen by analyzing the MALDI-TOF profile of the peptide fraction and finding the cleaved peptides only in female venoms. Synthetic replicates of the cleaved BPPs were less potent than the full-length BPP-10c in potentiating the bradykinin hypotensive effect, suggesting that the C-terminus is critical for the interaction of the BPPs with their mammalian molecular targets. This work represents a comprehensive mass spectrometric analysis of the peptide fraction of B. jararaca venom and shows for the first time sex-based differences in the snake venom peptidome of sibling and non-sibling snakes and suggests that the BPPs may follow distinct processing pathways in female and male individuals.  相似文献   

5.
Advances in NMR and mass spectrometry as well as in peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous products from spider venoms, previously explored due to technical limitations. The chemical composition of spider venoms is diverse, ranging from low molecular weight organic compounds such as acylpolyamines to complex peptides. First, acylpolyamines (< 1000 Da) have an aromatic moiety linked to a hydrophilic lateral chain. They were characterized for the first time in spider venoms and are ligand-gated ion channel antagonists, which block mainly postsynaptic glutamate receptors in invertebrate and vertebrate nervous systems. Acylpolyamines represent the vast majority of organic components from the spider venom. Acylpolyamine analogues have proven to suppress hippocampal epileptic discharges. Moreover, acylpolyamines could suppress excitatory postsynaptic currents inducing Ca+ accumulation in neurons leading to protection against a brain ischemic insult. Second, short spider peptides (< 6000 Da) modulate ionic currents in Ca2+, Na+, or K+ voltage-gated ion channels. Such peptides may contain from three to four disulfide bridges. Some spider peptides act specifically to discriminate among Ca2+, Na+, or K+ ion channel subtypes. Their selective affinities for ion channel subfamilies are functional for mapping excitable cells. Furthermore, several of these peptides have proven to hyperpolarize peripheral neurons, which are associated with supplying sensation to the skin and skeletal muscles. Some spider N-type calcium ion channel blockers may be important for the treatment of chronic pain. A special group of spider peptides are the amphipathic and positively charged peptides. Their secondary structure is alpha-helical and they insert into the lipid cell membrane of eukaryotic or prokaryotic cells leading to the formation of pores and subsequently depolarizing the cell membrane. Acylpolyamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs.  相似文献   

6.
Animal venoms and toxins are now recognized as major sources of bioactive molecules that may be tomorrow's new drug leads. Their complexity and their potential as drug sources have been demonstrated by application of modern analytical technologies, which have revealed venoms to be vast peptide combinatorial libraries. Structural as well as pharmacological diversity is immense, and mass spectrometry is now one of the major investigative tools for the structural investigation of venom components. Recent advances in its use in the study of venom and toxins are reviewed. The application of mass spectrometry techniques to peptide toxin sequence determination by de novo sequencing is discussed in detail, in the light of the search for novel analgesic drugs. We also present the combined application of LC-MALDI separation with mass fingerprinting and ISD fragmentation for the determination of structural and pharmacological classes of peptides in complex spider venoms. This approach now serves as the basis for the full investigation of complex spider venom proteomes, in combination with cDNA analysis.  相似文献   

7.
Snake venomics. Strategy and applications   总被引:7,自引:0,他引:7  
Snake bites can be deadly, but the venoms also contain components of medical and biotechnological value. The proteomic characterization of snake venom proteomes, snake venomics, has thus a number of potential benefits for basic research, clinical diagnosis, and development of new research tools and drugs of potential clinical use. Snake venomics is also relevant for a deep understanding of the evolution and the biological effects of the venoms, and to generate immunization protocols to elicit toxin-specific antibodies with greater specificity and effectiveness than conventional systems. Our snake venomics approach starts with the fractionation of the crude venom by reverse-phase HPLC, followed by the initial characterization of each protein fraction by combination of N-terminal sequencing, SDS-PAGE, and mass spectrometric determination of the molecular masses and the cysteine (SH and S--S) content. Protein fractions showing a single electrophoretic band, molecular mass, and N-terminal sequence can be straightforwardly assigned by BLAST analysis to a known protein family. On the other hand, protein fractions showing heterogeneous or blocked N-termini are analyzed by SDS-PAGE and the bands of interest subjected to automated reduction, carbamidomethylation, and in-gel tryptic digestion. The resulting tryptic peptides are then analyzed by MALDI-TOF mass fingerprinting followed by amino acid sequence determination of selected doubly and triply charged peptide ions by collision-induced dissociation tandem mass spectrometry. The combined strategy allows us to assign unambiguously all the isolated venom toxins representing over 0.05% of the total venom proteins to known protein families. Protocols and applications of snake venomics are reviewed and discussed.  相似文献   

8.
Fingerprinting by mass spectrometry has been increasingly used to study venom variations and for taxonomic analyses based on venom components. Most of these studies have concentrated on components heavier than 3 kDa, but Bothrops snake venoms contain many biologically active peptides, principally C-type natriuretic peptides and bradykinin-potentiating peptides (BPPs). In this work, we have examined the peptide profile of Bothrops venoms (B. alternatus, B. erythromelas, B. insularis, B. jararaca, B. jararacussu, B. leucurus and B. moojeni) using direct infusion nano-electrospray ionization mass spectrometry (nano-ESI-MS) subjecting the data further to principal components analysis (PCA) to assess whether the peptide distributions are reliable in distinguishing the venoms. ESI-MS of a low molar mass fraction obtained by ultrafiltration of each venom (5 kDa nominal cutoff filters) revealed that the venoms have a variety of peptides in common but that each venom also contains taxonomic marker peptides not shared with other venoms. One BPP peptide, QGGWPRPGPEIPP, was found to be common to the seven Bothrops species examined. This peptide may represent a specific marker for this genus since it was not found in the venom of the South American rattlesnake, Crotalus durissus terrificus. PCA on the ESI-MS data reveals a close relationship between B. jararaca, B. jararacussu and B. moojeni venoms, with B. leucurus and B. erythromelas being more distant from these three; B. alternatus and B. insularis were also located distant from these five species, as was C. d. terrificus. These results agree partially with established phylogenetic relationships among these species and suggest that ESI-MS peptide fingerprinting of snake venoms coupled with PCA is a useful tool for identifying venoms and for taxonomic analyses.  相似文献   

9.
质谱法分析蛇毒蛋白翻译后修饰   总被引:2,自引:1,他引:1  
采用SDS-PAGE分离大连黑眉蝮蛇(Gloydius Shedaoensis)蛇毒蛋白组分, Pro-Q Emerald 488糖蛋白和Pro-Q Diamond磷酸化蛋白荧光染料用于糖蛋白和磷酸化蛋白泳带染色, 采用高效液相色谱电喷雾电离串联质谱(HPLC-nESI-MS/MS)法鉴定蛋白. SDS-PAGE胶上的8条糖蛋白带被分别鉴定为L-氨基酸氧化酶、金属蛋白酶、谷氨酰环化酶、C-端缺失L-氨基酸氧化酶、纤溶酶原激活物、磷脂酶A2(PLA2)和神经生长因子; 5条磷酸化蛋白带被分别鉴定为Stejaggregin-A、PLA2、Crisp、金属蛋白酶 P-Ⅲ和Acutolysin e precursor, 与其它蛇毒来源蛋白具有一定的同源性. 为进一步验证方法的可靠性, 采用离子交换和凝胶过滤层析技术纯化得到了PLA2, Pro-Q Diamond染色结果显示PLA2被磷酸化. 研究所得结果为进一步研究蛋白质翻译后修饰对蛇毒蛋白的生物活性、结构与功能提供了依据.  相似文献   

10.
Flavonoids comprise a large group of structurally diverse polyphenolic compounds of plant origin and are abundantly found in human diet such as fruits, vegetables, grains, tea, dairy products, red wine, etc. Major classes of flavonoids include flavonols, flavones, flavanones, flavanols, anthocyanidins, isoflavones, and chalcones. Owing to their potential health benefits and medicinal significance, flavonoids are now considered as an indispensable component in a variety of medicinal, pharmaceutical, nutraceutical, and cosmetic preparations. Moreover, flavonoids play a significant role in preventing cardiovascular diseases (CVDs), which could be mainly due to their antioxidant, antiatherogenic, and antithrombotic effects. Epidemiological and in vitro/in vivo evidence of antioxidant effects supports the cardioprotective function of dietary flavonoids. Further, the inhibition of LDL oxidation and platelet aggregation following regular consumption of food containing flavonoids and moderate consumption of red wine might protect against atherosclerosis and thrombosis. One study suggests that daily intake of 100 mg of flavonoids through the diet may reduce the risk of developing morbidity and mortality due to coronary heart disease (CHD) by approximately 10%. This review summarizes dietary flavonoids with their sources and potential health implications in CVDs including various redox-active cardioprotective (molecular) mechanisms with antioxidant effects. Pharmacokinetic (oral bioavailability, drug metabolism), toxicological, and therapeutic aspects of dietary flavonoids are also addressed herein with future directions for the discovery and development of useful drug candidates/therapeutic molecules.  相似文献   

11.
李泽华  王闯  徐斌  陈佳  张瑛  郭磊  谢剑炜 《色谱》2023,41(2):122-130
针对5个疑似蛇毒毒液及其沾染样品,基于纳升级超高效液相色谱-四极杆-静电场轨道阱高分辨质谱(Nano LC-MS/HRMS)技术,结合尺寸排阻色谱分离,建立了一种蛋白质种类及物种归属的严格鉴定方法。5个样品经尺寸排阻色谱分离后均得到3个洗脱峰,分别冻干后以胰蛋白酶进行溶液内酶解处理并进行液相色谱-高分辨质谱分析鉴定。首先采用全扫描-数据依赖型MS/MS(Full MS/dd MS2)采集模式对样品中的肽段信息进行非靶向采集,依次与Swiss-Prot、蛇亚目(Serpentes)、游蛇科(Colubroidea)、眼镜蛇科(Elapidae)、眼镜蛇亚科(Elapinae)、眼镜蛇属(Naja)蛋白质数据库逐级收缩比对;再筛选符合肽谱匹配度、肽段错误发现率小于1%和特征肽段数目大于等于2的蛋白质,共鉴定到32种蛋白质均来自中华眼镜蛇(Naja atra),可归属于Naja atra的10个家族,主要为三指毒素、金属蛋白酶、磷脂酶A2等。最后,采用平行反应监测模式选取每种蛋白质的两条特征肽段进行靶向验证,当两条特征肽段均满足“至少75%的y+和b+离子的Δm/z小于5 ppm”时,方认为鉴定到了样品中的某一蛋白质。最终鉴定出5个样品均含有Naja atra蛇毒。此鉴定方法研究系统、严格,可为蛇毒中毒司法鉴定以及毒药物研究等提供有效的技术支持。  相似文献   

12.
Nowadays, cancer has become the second highest leading cause of death, and it is expected to continue to affect the population in forthcoming years. Additionally, treatment options will become less accessible to the public as cases continue to grow and disease mechanisms expand. Hence, specific candidates with confirmed anticancer effects are required to develop new drugs. Among the novel therapeutic options, proteins are considered a relevant source, given that they have bioactive peptides encrypted within their sequences. These bioactive peptides, which are molecules consisting of 2–50 amino acids, have specific activities when administered, producing anticancer effects. Current databases report the effects of peptides. However, uncertainty is found when their molecular mechanisms are investigated. Furthermore, analyses addressing their interaction networks or their directly implicated mechanisms are needed to elucidate their effects on cancer cells entirely. Therefore, relevant peptides considered as candidates for cancer therapeutics with specific sequences and known anticancer mechanisms were accurately reviewed. Likewise, those features which turn certain peptides into candidates and the mechanisms by which peptides mediate tumor cell death were highlighted. This information will make robust the knowledge of these candidate peptides with recognized mechanisms and enhance their non-toxic capacity in relation to healthy cells and further avoid cell resistance.  相似文献   

13.
We investigated venoms from members of the genus Atheris (Serpentes, Viperidae), namely the rough scale bush viper (Atheris squamigera), the green bush viper (A. chlorechis) and the great lakes bush viper (A. nitschei), using mass spectrometry-based strategies, relying on matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) and electrospray ionisation tandem mass spectrometry (ESI-MS/MS) with de novo peptide sequencing. We discovered a set of novel peptides with masses in the 2-3 kDa range and containing poly-His and poly-Gly segments (pHpG). Complete primary structural elucidation and confirmation of two sequences by Edman degradation indicated the consensus sequence EDDH(9)GVG(10). Bioinformatic investigations in protein sequence databanks did not show relevant homology with known peptides or proteins. However, a more extensive investigation of data in nucleic acid databases revealed some similarities to the precursor sequences of bradykinin potentiating peptides (BPP) and C-type natriuretic peptides (CNP), agents that are known to affect the cardiovascular system by acting on specific metalloproteases and receptors. The novel pHpG peptides found in Atheris venoms might also act on the cardiovascular system by inhibiting particular metalloproteases, which however remain to be identified.  相似文献   

14.
Applied Biochemistry and Biotechnology - Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genusBothrops. Following the venom inoculation, the local...  相似文献   

15.
Scorpion venoms are very complex mixtures of molecules, most of which are peptides that display different kinds of biological activity. These venoms have been studied in the light of their pharmacological targets and their constituents are able to bind specifically to a variety of ionic channels located in prey tissues, resulting in neurotoxic effects. Toxins that modulate Na(+), K(+), Ca(++) and Cl(-) currents have been described in scorpion venoms. Mass spectrometry was employed to analyze toxic fractions from the venom of the Brazilian scorpion Tityus serrulatus in order to shed light on the molecular composition of this venom and to facilitate the search for novel pharmacologically active compounds. T. serrulatus venom was first subjected to gel filtration to separate its constituents according to their molecular size. The resultant fractions II and III, which account for 90 and 10% respectively of the whole venom toxic effect, were further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS), on-line liquid chromatography/electrospray mass spectrometry (LC/ESMS) and off-line LC/MALDI-TOFMS in order to establish their mass fingerprints. The molecular masses in fraction II were predominantly between 6500 and 7500 Da. This corresponds to long-chain toxins that mainly act on voltage-gated Na(+) channels. Fraction III is more complex and predominantly contained molecules with masses between 2500 and 5000 Da. This corresponds to the short-chain toxin family, most of which act on K(+) channels, and other unknown peptides. Finally, we were able to measure the molecular masses of 380 different compounds present in the two fractions investigated. To our knowledge, this is the largest number of components ever detected in the venom of a single animal species. Some of the toxins described previously from T. serrulatus venom could be detected by virtue of their molecular masses. The interpretation of this large set of data has provided us with useful proteomic information on the venom, and the implications of these findings are discussed.  相似文献   

16.
Animal venoms are complex mixtures of more than 100 different compounds, including peptides, proteins, and nonprotein compounds such as lipids, carbohydrates, and metal ions. In addition, the existing compounds show a wide range of molecular weights and concentrations within these venoms, making separation and purification procedures quite tedious. Here, we analyzed for the first time by MS the advantages of using the OFFGEL technique in the separation of the venom components of the Egyptian Elapidae Walterinnesia aegyptia snake compared to two classical methods of separation, SEC and RP‐HPLC. We demonstrate that OFFGEL separates venom components over a larger scale of fractions, preserve respectable resolution with regard to the presence of a given compound in adjacent fractions and allows the identification of a greater number of ions by MS (102 over 134 total ions). We also conclude that applying several separating techniques (SEC and RP‐HPLC in addition to OFFGEL) provides complementary results in terms of ion detection (21 more for SEC and 22 more with RP‐HPLC). As a result, we provide a complete list of 134 ions present in the venom of W. aegyptia by using all these techniques combined.  相似文献   

17.
Instrumental neutron activation analysis (INAA) has been applied to multielemental determinations of Brazilian snake venoms from the species: Bothrops jararacussu, Crotalus durissus terrificus and Bothrops jararaca. Concentrations of Br, Ca, Cl, Cs, K, Mg, Na, Rb, Sb, Se and Zn have been determined in lyophilized venoms by using short and long irradiations in the IEA-RI nuclear reactor under a thermal neutron flux of 1011 to 1013 n0 ·cm–2·s–1. The reference materials NIST bovine Liver 1577 and IUPAC Bowen's Kale were also analyzed simultaneously with the venoms to evaluate the accuracy and the reproducibility of the method. The concentrations of the elements found in snake venoms from different species were compared. The Crotalus durissus terrificus venoms presented high concentration of Se but low concentrations of Zn when these results are compared with those obtained from genera Bothrops venoms.  相似文献   

18.
Recently, the demand for food proteins in the market has increased due to a rise in degenerative illnesses that are associated with the excessive production of free radicals and the unwanted side effects of various drugs, for which researchers have suggested diets rich in bioactive compounds. Some of the functional compounds present in foods are antioxidant and antimicrobial peptides, which are used to produce foods that promote health and to reduce the consumption of antibiotics. These peptides have been obtained from various sources of proteins, such as foods and agri-food by-products, via enzymatic hydrolysis and microbial fermentation. Peptides with antioxidant properties exert effective metal ion (Fe2+/Cu2+) chelating activity and lipid peroxidation inhibition, which may lead to notably beneficial effects in promoting human health and food processing. Antimicrobial peptides are small oligo-peptides generally containing from 10 to 100 amino acids, with a net positive charge and an amphipathic structure; they are the most important components of the antibacterial defense of organisms at almost all levels of life—bacteria, fungi, plants, amphibians, insects, birds and mammals—and have been suggested as natural compounds that neutralize the toxicity of reactive oxygen species generated by antibiotics and the stress generated by various exogenous sources. This review discusses what antioxidant and antimicrobial peptides are, their source, production, some bioinformatics tools used for their obtainment, emerging technologies, and health benefits.  相似文献   

19.
《Electrophoresis》2017,38(16):2050-2059
Snake venoms constitute a very promising resource for the development of new medicines. They are mainly composed of very complex peptide and protein mixtures, which composition may vary significantly from batch to batch. This latter consideration is a challenge for routine quality control (QC) in the pharmaceutical industry. In this paper, we report the use of capillary zone electrophoresis for the development of an analytical fingerprint methodology to assess the quality of snake venoms. The analytical fingerprint concept is being widely used for the QC of herbal drugs but rarely for venoms QC so far. CZE was chosen for its intrinsic efficiency in the separation of protein and peptide mixtures. The analytical fingerprint methodology was first developed and evaluated for a particular snake venom, Lachesis muta . Optimal analysis conditions required the use of PDADMAC capillary coating to avoid protein and peptide adsorption. Same analytical conditions were then applied to other snake venom species. Different electrophoretic profiles were obtained for each venom. Excellent repeatability and intermediate precision was observed for each batch. Analysis of different batches of the same species revealed inherent qualitative and quantitative composition variations of the venoms between individuals.  相似文献   

20.
Lithium–sulfur batteries (LSBs) are considered one of the most promising candidates for next-generation energy storage owing to their large energy capacity. Tremendous effort has been devoted to overcoming the inherent problems of LSBs to facilitate their commercialization, such as polysulfide shuttling and dendritic lithium growth. Pouch cells present additional challenges for LSBs as they require greater electrode active material utilization, a lower electrolyte–sulfur ratio, and more mechanically robust electrode architectures to ensure long-term cycling stability. In this review, the critical challenges facing practical Li–S pouch cells that dictate their energy density and long-term cyclability are summarized. Strategies and perspectives for every major pouch cell component—cathode/anode active materials and electrode construction, separator design, and electrolyte—are discussed with emphasis placed on approaches aimed at improving the reversible electrochemical conversion of sulfur and lithium anode protection for high-energy Li–S pouch cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号