首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new series of di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were synthesized. Initially, azomethine ylides were generated via reaction of the substituted isatins 3a–f (isatin, 3a, 6-chloroisatin, 3b, 5-fluoroisatin, 3c, 5-nitroisatin, 3d, 5-methoxyisatin, 3e, and 5-methylisatin, 3f, and (2S)-octahydro-1H-indole-2-carboxylic acid 2, in situ azomethine ylides reacted with the cyclohexanone based-chalcone 1a–f to afford the target di-spirooxindole compounds 4a–n. This one-pot method provided diverse structurally complex molecules, with biologically relevant spirocycles in a good yields. All synthesized di-spirooxindole analogs, engrafted with oxindole and cyclohexanone moieties, were evaluated for their anticancer activity against four cancer cell lines, including prostate PC3, cervical HeLa, and breast (MCF-7, and MDA-MB231) cancer cell lines. The cytotoxicity of these di-spirooxindole analogs was also examined against human fibroblast BJ cell lines, and they appeared to be non-cytotoxic. Compound 4b was identified as the most active member of this series against prostate cancer cell line PC3 (IC50 = 3.7 ± 1.0 µM). The cyclohexanone engrafted di-spirooxindole analogs 4a and 4l (IC50 = 7.1 ± 0.2, and 7.2 ± 0.5 µM, respectively) were active against HeLa cancer cells, whereas NO2 substituted isatin ring and meta-fluoro-substituted (2E,6E)-2,6-dibenzylidenecyclohexanone containing 4i (IC50 = 7.63 ± 0.08 µM) appeared to be a promising agent against the triple negative breast cancer MDA-MB231 cell line. To explore the plausible mechanism of anticancer activity of di-spirooxindole analogs, molecular docking studies were investigated which suggested that spirooxindole analogs potentially inhibit the activity of MDM2.  相似文献   

2.
Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 1–8 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2.  相似文献   

3.
Pyridine, 1,3,4-thiadiazole, and 1,3-thiazole derivatives have various biological activities, such as antimicrobial, analgesic, anticonvulsant, and antitubercular, as well as other anticipated biological properties, including anticancer activity. The starting 1-(3-cyano-4,6-dimethyl-2-oxopyridin-1(2H)-yl)-3-phenylthiourea (2) was prepared and reacted with various hydrazonoyl halides 3a–h, α-haloketones 5a–d, 3-chloropentane-2,4-dione 7a and ethyl 2-chloro-3-oxobutanoate 7b, which afforded the 3-aryl-5-substituted 1,3,4-thiadiazoles 4a–h, 3-phenyl-4-arylthiazoles 6a–d and the 4-methyl-3- phenyl-5-substituted thiazoles 8a,b, respectively. The structures of the synthesized products were confirmed by spectral data. All of the compounds also showed remarkable anticancer activity against the cell line of human colon carcinoma (HTC-116) as well as hepatocellular carcinoma (HepG-2) compared with the Harmine as a reference under in vitro condition. 1,3,4-Thiadiazole 4h was found to be most promising and an excellent performer against both cancer cell lines (IC50 = 2.03 ± 0.72 and 2.17 ± 0.83 µM, respectively), better than the reference drug (IC50 = 2.40 ± 0.12 and 2.54 ± 0.82 µM, respectively). In order to check the binding modes of the above thiadiazole derivatives, molecular docking studies were performed that established a binding site with EGFR TK.  相似文献   

4.
Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease that causes dementia in people aged 65 and over. In the present study, a series of thiadiazole hybrid compounds with benzothiazine derivatives as acetylcholinesterase inhibitors were developed and evaluated for their biological activity. The AChE and BChE inhibition potentials of all compounds were evaluated by using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant inhibitory activity against AChE. Compounds 3i and 3j showed IC50 values of 0.027 µM and 0.025 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also showed significant inhibition against AChE. Further docking simulation also revealed that these compounds (3i and 3j) interacted with the active site of the enzyme similarly to donepezil. The antioxidant study revealed that compounds 3i and 3j exhibited greater antioxidant effects. An in vitro blood–brain barrier permeability study showed that compounds 3i and 3j are promising compounds against AD. The cytotoxicity study of compounds 3i and 3j showed non-cytotoxic with an IC50 value of 98.29 ± 3.98 µM and 159.68 ± 5.53 µM against NIH/3T3 cells, respectively.  相似文献   

5.
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.  相似文献   

6.
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.  相似文献   

7.
Sixteen dihydroartemisinin-5-methylisatin hybrids 6a–c and 7a–m tethered via different carbon spacers were assessed for their antiproliferative activity against MCF-7, MDA-MB-231, MCF-7/ADR and MDA-MB-231/ADR breast cancer cell lines as well as cytotoxicity towards MCF-10A cells to investigate the influence of the length of carbon spacers on the activity. The preliminary results illustrated that the length of the carbon spacer was the main parameter which affected the activity, and hybrids tethered via the two-carbon linker showed the highest activity. Amongst the synthesized hybrids, the representative hybrid 7a (IC50: 15.3–20.1 µM) not only demonstrated profound activity against both drug-sensitive and drug-resistant breast cancer cell lines, but also possessed excellent safety and selectivity profile. Collectivity, hybrid 7a was a promising candidate for the treatment of both drug-sensitive and drug-resistant breast cancers and worthy of further preclinical evaluations.  相似文献   

8.
Regulating insulin and leptin levels using a protein tyrosine phosphatase 1B (PTP1B) inhibitor is an attractive strategy to treat diabetes and obesity. Glycyrrhetinic acid (GA), a triterpenoid, may weakly inhibit this enzyme. Nonetheless, semisynthetic derivatives of GA have not been developed as PTP1B inhibitors to date. Herein we describe the synthesis and evaluation of two series of indole- and N-phenylpyrazole-GA derivatives (4a–f and 5a–f). We measured their inhibitory activity and enzyme kinetics against PTP1B using p-nitrophenylphosphate (pNPP) assay. GA derivatives bearing substituted indoles or N-phenylpyrazoles fused to their A-ring showed a 50% inhibitory concentration for PTP1B in a range from 2.5 to 10.1 µM. The trifluoromethyl derivative of indole-GA (4f) exhibited non-competitive inhibition of PTP1B as well as higher potency (IC50 = 2.5 µM) than that of positive controls ursolic acid (IC50 = 5.6 µM), claramine (IC50 = 13.7 µM) and suramin (IC50 = 4.1 µM). Finally, docking and molecular dynamics simulations provided the theoretical basis for the favorable activity of the designed compounds.  相似文献   

9.
The growing risk of antimicrobial resistance besides the continuous increase in the number of cancer patients represents a great threat to global health, which requires intensified efforts to discover new bioactive compounds to use as antimicrobial and anticancer agents. Thus, a new set of pyridothienopyrimidine derivatives 2a,b–9a,b was synthesized via cyclization reactions of 3-amino-thieno[2,3-b]pyridine-2-carboxamides 1a,b with different reagents. All new compounds were evaluated against five bacterial and five fungal strains. Many of the target compounds showed significant antimicrobial activity. In addition, the new derivatives were further subjected to cytotoxicity evaluation against HepG-2 and MCF-7 cancer cell lines. The most potent cytotoxic candidates (3a, 4a, 5a, 6b, 8b and 9b) were examined as EGFR kinase inhibitors. Molecular docking study was also performed to explore the binding modes of these derivatives at the active site of EGFR-PK. Compounds 3a, 5a and 9b displayed broad spectrum antimicrobial activity with MIC ranges of 4–16 µg/mL and potent cytotoxic activity with IC50 ranges of 1.17–2.79 µM. In addition, they provided suppressing activity against EGFR with IC50 ranges of 7.27–17.29 nM, higher than that of erlotinib, IC50 = 27.01 nM.  相似文献   

10.
In this work, a series of novel 1,2,3-triazolyl-coumarin hybrid systems were designed as potential antitumour agents. The structural modification of the coumarin ring was carried out by Cu(I)-catalysed Huisgen 1,3-dipolar cycloaddition of 7-azido-4-methylcoumarin and terminal aromatic alkynes to obtain 1,4-disubstituted 1,2,3-triazolyl-coumarin conjugates 2a–g, bis(1,2,3-triazolyl-coumarin)benzenes 2h–i and coumarin-1,2,3-triazolyl-benzazole hybrids 4a–b. The newly synthesised hybrid molecules were investigated for in vitro antitumour activity against five human cancer cell lines, colon carcinoma HCT116, breast carcinoma MCF-7, lung carcinoma H 460, human T-lymphocyte cells CEM, cervix carcinoma cells HeLa, as well as human dermal microvascular endothelial cells (HMEC-1). Most of these compounds showed moderate to pronounced cytotoxic activity, especially towards MCF-7 cell lines with IC50 = 0.3–32 μM. In addition, compounds 2a–i and 4a–b were studied by UV-Vis absorption and fluorescence spectroscopy and their basic photophysical parameters were determined.  相似文献   

11.
This study aimed to determine the in vitro cytotoxicity and understand possible cytotoxic mechanisms via an in silico study of eleven chalcones synthesized from two acetophenones. Five were synthesized from a prenylacetophenone isolated from a plant that grows in the Andean region of the Atacama Desert. The cytotoxic activity of all the synthesized chalcones was tested against breast cancer cell lines using an MTT cell proliferation assay. The results suggest that the prenyl group in the A-ring of the methoxy and hydroxyl substituents of the B-ring appear to be crucial for the cytotoxicity of these compounds. The chalcones 12 and 13 showed significant inhibitory effects against growth in MCF-7 cells (IC50 4.19 ± 1.04 µM and IC50 3.30 ± 0.92 µM), ZR-75-1 cells (IC50 9.40 ± 1.74 µM and IC50 8.75 ± 2.01µM), and MDA-MB-231 cells (IC50 6.12 ± 0.84 µM and IC50 18.10 ± 1.65 µM). Moreover, these chalcones showed differential activity between MCF-10F (IC50 95.76 ± 1.52 µM and IC50 95.11 ± 1.97 µM, respectively) and the tumor lines. The in vitro results agree with molecular coupling results, whose affinity energies and binding mode agree with the most active compounds. Thus, compounds 12 and 13 can be considered for further studies and are candidates for developing new antitumor agents. In conclusion, these observations give rise to a new hypothesis for designing chalcones with potential cytotoxicity with high potential for the pharmaceutical industry.  相似文献   

12.
A second generation of 4-aminoquinoline- and 8-aminoquinoline-based tetrazoles and lactams were synthesized via the Staudinger and Ugi multicomponent reactions. These compounds were subsequently evaluated in vitro for their potential antiplasmodium activity against a multidrug-resistant K1 strain and for their antitrypanosomal activity against a cultured T. b. rhodesiense STIB900 strain. Several of these compounds (4a–g) displayed good antiplasmodium activities (IC50 = 0.20–0.62 µM) that were comparable to the reference drugs, while their antitrypanosomal activity was moderate (<20 µM). Compound 4e was 2-fold more active than primaquine and was also the most active (IC50 = 7.01 µM) against T. b. rhodesiense and also exhibited excellent aqueous solubility (>200 µM) at pH 7.  相似文献   

13.
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a–l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a–l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II.  相似文献   

14.
Twenty newly synthesized derivatives of [6]-shogaol (4) were tested for inhibitory activity against histone deacetylases. All derivatives showed moderate to good histone deacetylase inhibition at 100 µM with a slightly lower potency than the lead compound. Most potent inhibitors among the derivatives were the pyrazole products, 5j and 5k, and the Michael adduct with pyridine 4c and benzothiazole 4d, with IC50 values of 51, 65, 61 and 60 µM, respectively. They were further evaluated for isoform selectivity via a molecular docking study. Compound 4d showed the best selectivity towards HDAC3, whereas compound 5k showed the best selectivity towards HDAC2. The potential derivatives were tested on five cancer cell lines, including human cervical cancer (HeLa), human colon cancer (HCT116), human breast adenocarcinoma cancer (MCF-7), and cholangiocarcinoma (KKU100 and KKU-M213B) cells with MTT-based assay. The most active histone deacetylase inhibitor 5j exhibited the best antiproliferative activity against HeLa, HCT116, and MCF-7, with IC50 values of 8.09, 9.65 and 11.57 µM, respectively, and a selective binding to HDAC1 based on molecular docking experiments. The results suggest that these compounds can be putative candidates for the development of anticancer drugs via inhibiting HDACs.  相似文献   

15.
Seven undescribed scalarane sesterterpenoids, nambiscalaranes B–H (1–7), together with two known compounds, nambiscalarane (8) and aurisin A (9) were isolated from the cultured mycelium of the luminescent mushroom Neonothopanus nambi. Their structures were elucidated by thorough analysis of their 1D and 2D NMR spectroscopic data. The absolute configurations of 1–8 were determined by electronic circular dichroism (ECD) calculations and optical rotation measurements. The isolated sesterterpenoids were evaluated against A549, HT29, HeLa, and HCT-116 cancer cell lines, and against five bacterial strains. Compounds 3, 5, and 7 showed strong cytotoxicity against HCT-116 cell line, with IC50 values ranging from 13.41 to 16.53 µM, and showed no cytotoxicity towards Vero cells. Moreover, compound 8 inhibited the growth of Bacillus subtilis with a MIC value of 8 µg/mL, which was equivalent to the MIC value of the standard kanamycin.  相似文献   

16.
A library of bile-acid-appended triazolyl aryl ketones was synthesized and characterized by detailed spectroscopic techniques such as 1H and 13C NMR, HRMS and HPLC. All the synthesized conjugates were evaluated for their cytotoxicity at 10 µM against MCF-7 (human breast adenocarcinoma) and 4T1 (mouse mammary carcinoma) cells. In vitro cytotoxicity studies on the synthesized conjugates against MCF-7 and 4T1 cells indicated one of the conjugate 6cf to be most active against both cancer cell lines, with IC50 values of 5.71 µM and 8.71 µM, respectively, as compared to the reference drug docetaxel, possessing IC50 values of 9.46 µM and 13.85 µM, respectively. Interestingly, another compound 6af (IC50 = 2.61 µM) was found to possess pronounced anticancer activity as compared to the reference drug docetaxel (IC50 = 9.46 µM) against MCF-7. In addition, the potent compounds (6cf and 6af) were found to be non-toxic to normal human embryonic kidney cell line (HEK 293), as evident from their cell viability of greater than 86%. Compound 6cf induces higher apoptosis in comparison to 6af (46.09% vs. 33.89%) in MCF-7 cells, while similar apoptotic potential was observed for 6cf and 6af in 4T1 cells. The pharmacokinetics of 6cf in Wistar rats showed an MRT of 8.47 h with a half-life of 5.63 h. Clearly, these results suggest 6cf to be a potential candidate for the development of anticancer agents.  相似文献   

17.
Nowadays, cancer disease seems to be the second most common cause of death worldwide. Molecular hybridization is a drug design strategy that has provided promising results against multifactorial diseases, including cancer. In this work, two series of phthalazinone-dithiocarbamate hybrids were described, compounds 6–8, which display the dithiocarbamate scaffold at N2, and compounds 9, in which this moiety was placed at C4. The proposed compounds were successfully synthesized via the corresponding aminoalkyl phthalazinone derivatives and using a one-pot reaction with carbon disulfide, anhydrous H3PO4, and different benzyl or propargyl bromides. The antiproliferative effects of the titled compounds were explored against three human cancer cell lines (A2780, NCI-H460, and MCF-7). The preliminary results revealed significant differences in activity and selectivity depending on the dithiocarbamate moiety location. Thus, in general terms, compounds 68 displayed better activity against the A-2780 and MCF-7 cell lines, while most of the analogues of the 9 group were selective toward the NCI-H460 cell line. Compounds 6e, 8e, 6g, 9a–b, 9d, and 9g with IC50 values less than 10 µM were the most promising. The drug-likeness and toxicity properties of the novel phthalazinone-dithiocarbamate hybrids were predicted using Swiss-ADME and ProTox web servers, respectively.  相似文献   

18.
A chalcone series (3a–f) with electron push–pull effect was synthesized via a one-pot Claisen–Schmidt reaction with a simple purification step. The compounds exhibited strong emission, peaking around 512–567 nm with mega-stokes shift (∆λ = 93–139 nm) in polar solvents (DMSO, MeOH, and PBS) and showed good photo-stability. Therefore, 3a–f were applied in cellular imaging. After 3 h of incubation, green fluorescence was clearly brighter in cancer cells (HepG2) compared to normal cells (HEK-293), suggesting preferential accumulation in cancer cells. Moreover, all compounds exhibited higher cytotoxicity within 24 h toward cancer cells (IC50 values ranging from 45 to 100 μM) than normal cells (IC50 value >100 μM). Furthermore, the antimicrobial properties of chalcones 3a–f were investigated. Interestingly, 3a–f exhibited antibacterial activities against Escherichia coli and Staphylococcus aureus, with minimum bactericidal concentrations (MBC) of 0.10–0.60 mg/mL (375–1000 µM), suggesting their potential antibacterial activity against both Gram-negative and Gram-positive bacteria. Thus, this series of chalcone-derived fluorescent dyes with facile synthesis shows great potential for the development of antibiotics and cancer cell staining agents.  相似文献   

19.
Considering the importance of benzothiazepine pharmacophore, an attempt was carried out to synthesize novel 1,5-benzothiazepine derivatives using polyethylene glycol-400 (PEG-400)-mediated pathways. Initially, different chalcones were synthesized and then subjected to a cyclization step with benzothiazepine in the presence of bleaching clay and PEG-400. PEG-400-mediated synthesis resulted in a yield of more than 95% in less than an hour of reaction time. Synthesized compounds 2a–2j were investigated for their in vitro cytotoxic activity. Moreover, the same compounds were subjected to systematic in silico screening for the identification of target proteins such as human adenosine kinase, glycogen synthase kinase-3β, and human mitogen-activated protein kinase 1. The compounds showed promising results in cytotoxicity assays; among the tested compounds, 2c showed the most potent cytotoxic activity in the liver cancer cell line Hep G-2, with an IC50 of 3.29 ± 0.15 µM, whereas the standard drug IC50 was 4.68 ± 0.17 µM. In the prostate cancer cell line DU-145, the compounds displayed IC50 ranges of 15.42 ± 0.16 to 41.34 ± 0.12 µM, while the standard drug had an IC50 of 21.96 ± 0.15 µM. In terms of structural insights, the halogenated phenyl substitution on the second position of benzothiazepine was found to significantly improve the biological activity. This characteristic feature is supported by the binding patterns on the selected target proteins in docking simulations. In this study, 1,5-benzothiazepines have been identified as potential anticancer agents which can be further exploited for the development of more potent derivatives.  相似文献   

20.
This study aimed to establish the phytochemical profile of Glochidion velutinum and its cytotoxic activity against prostate cancer (PC-3) and breast cancer (MCF-7) cell lines. The phytochemical composition of G. velutinum leaf extract and its fractions was established with the help of total phenolic and flavonoid contents and LC-MS/MS-based metabolomics analysis. The crude methanolic extract and its fractions were studied for pharmacological activity against PC-3 and MCF-7 cell lines using the MTT assay. The total phenolic content of the crude extract and its fractions ranged from 44 to 859 µg GAE/mg of sample whereas total flavonoid contents ranged from 20 to 315 µg QE/mg of sample. A total of forty-eight compounds were tentatively dereplicated in the extract and its fractions. These phytochemicals included benzoic acid derivatives, flavans, flavones, O-methylated flavonoids, flavonoid O- and C-glycosides, pyranocoumarins, hydrolysable tannins, carbohydrate conjugates, fatty acids, coumarin glycosides, monoterpenoids, diterpenoids, and terpene glycosides. The crude extract (IC50 = 89 µg/mL), the chloroform fraction (IC50 = 27 µg/mL), and the water fraction (IC50 = 36 µg/mL) were found to be active against the PC-3 cell line. However, the crude extract (IC50 = 431 µg/mL), the chloroform fraction (IC50 = 222 µg/mL), and the ethyl acetate fraction (IC50 = 226 µg/mL) have shown prominent activity against breast cancer cells. Moreover, G. velutinum extract and its fractions presented negligible toxicity to normal macrophages at the maximum tested dose (600 µg/mL). Among the compounds identified through LC-MS/MS-based metabolomics analysis, epigallocatechin gallate, ellagic acid, isovitexin, and rutin were reported to have anticancer activity against both prostate and breast cancer cell lines and might be responsible for the cytotoxic activities of G. velutinum extract and its bioactive fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号