首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1H NMR studies using a cationic complex with a pyridine-di-imidazolylidene pincer ligand of formula [Rh(CNC)(CO)]+ revealed that this compound showed high binding affinity with coronene in CH2Cl2. The interaction between coronene and the planar RhI complex is established by means of π-stacking interactions. This interaction has a strong impact on the electron-donating strength of the pincer CNC ligand, which is increased significantly, as demonstrated by the shifting of the ν(CO) stretching bands to lower frequencies. The addition of coronene increases the reaction rate of the nucleophilic attack of methyl iodide on the rhodium (I) pincer complex, and also has a positive effect on the performance of the complex as a catalyst in the cycloisomerization of 4-pentynoic acid. These findings highlight the importance of supramolecular interactions for tuning the reactivity and catalytic activity of square-planar metal complexes.  相似文献   

2.
Coordination of a pyridine-pyrazole-based PNN(H) ligand to RhI produces a family of neutral ( 1 ) and cationic ( 2Cl ) RhI complexes. Deprotonation of the parent Rh chloride complex with LiNiPr2 results in formation of a dinuclear LiCl bridged species 3 bearing a pyrazolate fragment. Complexes 1 , 2Cl and 3 were tested as precatalyst for the dehydrocoupling of amine boranes. All complexes studied show activity for the formation of cyclic oligomers with N-methylcyclotriborazane as the main product. Base activation of the neutral Rh chloride complex 1 produces catalyst systems that are significantly more active than the parent system, suggesting that dehydrohalogenation of the Rh chloride precatalyst 1 is one of the key steps for catalyst formation.  相似文献   

3.
Sterically congested bisphosphites were shown to be effective ligands for the Rh-catalyzed hydrosilation of ketones with diphenylsilane. The hydrosilation of 4-alkylcyclohexanones and ( m )-menthone led to a significant proportion of the less stable (axial) alcohol, which suggests that these reactions are under kinetic, rather than thermodynamic, control.  相似文献   

4.
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.  相似文献   

5.
The synthesis of two well‐defined rhodium(I) complexes of nitrous oxide (N2O) is reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature, enabling comprehensive structural interrogation by 15N NMR and IR spectroscopy, and single‐crystal X‐ray diffraction. These methods evidence coordination of N2O through the terminal nitrogen atom in a linear fashion and are supplemented by a computational energy decomposition analysis, which provides further insights into the nature of the Rh–N2O interaction.  相似文献   

6.
The exponential proliferation of conformers makes it impossible to examine the entire population in most systems. Controlling conformational ensembles is thus pivotal in many areas of chemistry. Rh2(esp)2, a dicarboxylate-derived paddlewheel rhodium complex, is one of the most effective catalysts for nitrene chemistry. Its enormous success has led to preparing many analogous complexes. However, there has been little consideration for the conformational dynamics of the parent catalyst. Herein, we report a new ligand modification principle that prevents conformer interconversion. The resulting complex comprises two isolable conformers, whose structures have been determined by X-ray diffraction. Combined experimental and computational data has revealed similarities and dissimilarities between the conformationally confined and parent complexes. Three model cases have demonstrated the utility of conformational fixation in the development of stereoselective catalysts for nitrene transfer reactions. The design principle described in this study can be combined with other established modification strategies, serving as a springboard for further advancement of the chemistry of paddlewheel metal complexes.  相似文献   

7.
The selective activation of C−F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.  相似文献   

8.
Treatment of [{Me2C6H(CH2PtBu2)2}Rh(η1‐N2)] ( 1a ) with molecular oxygen (O2) resulted in almost quantitative formation of the dioxygen adduct [{Me2C6H(CH2PtBu2)2}Rh(η2‐O2)] ( 2a ). An X‐ray diffraction study of 2a revealed the shortest O? O bond reported for Rh? O2 complexes, indicating the formation of a RhI? O2 adduct, rather than a cyclic RhIII η2‐peroxo complex. The coordination of the O2 ligand in 2a was shown to be reversible. Treatment of 2a with CO gas yielded almost quantitatively the corresponding carbonyl complex [{Me2C6H(CH2PtBu2)2}Rh(CO)] ( 3a ). Surprisingly, treatment of the structurally very similar pincer complex [{C6H3(CH2PiPr2)2)}Rh(η1‐N2)] ( 1b ) with O2 led to partial decomposition, with no dioxygen adduct being observed.  相似文献   

9.
The use of bis(NHC) manganese(I) complexes 3 as catalysts for the hydrogenation of esters was investigated. For that purpose, a series of complexes has been synthesized via an improved two step procedure utilizing bis(NHC)-BEt3 adducts. By applying complexes 3 with KHBEt3 as additive, various aromatic and aliphatic esters were hydrogenated successfully at mild temperatures and low catalyst loadings, highlighting the efficiency of the novel catalytic system. The versatility of the developed catalytic system was further demonstrated by the hydrogenation of other substrate classes like ketones, nitriles, N-heteroarenes and alkenes. Mechanistic experiments and DFT calculations indicate an inner sphere mechanism with the loss of one CO ligand and reveal the role of BEt3 as cocatalyst.  相似文献   

10.
Alternative Ligands. XXIV. Rhodium(I) Complexes with P-Donor and Sn- or B-Acceptor Ligands Donor/acceptor ligands of the type Me2PCH2CH2SnMe3 (1) , (Me2PCH2CH2)2SnMe2 (2) , and Me2PCMe=CMeBMe2 (3) , respectively, have been prepared by hydrostannlation of Me2PVi with Me3SnH or Me2SnH2 and by a multistep synthesis via Na[Me3BH], Na[Me3BC?;CMe] using Me2PCI as partner, respectively. The new ligands were used to produce the Rh(I) complexes RhCI(CO)(Me2PCH2CH2SnMe3)2 (5) , RhCI(CO)(Me2PCH2CH2)2SnMe2 (7), and RhCI(CO)(Me2PCMe=CMeBMe2)2 (8) by reactions of Rh(CO)2CH2 (4) with the corresponding ligands. In addition, the VASKA type compounds RhCI(CO)(Me2PVi)2 (6) and RhCI(CO)(PMe3)2 were prepared in order to test an alternative route to 5 or to from the known adduct RhCI(CO)(PMe3)2. BBr3 (9) . RhBr(CO)(PMe3)2 (10) and the binuclear system [RhBr(CO)PMe3]2 (11) were identified spectroscopically after working up the 1:1 reaction mixture of RhCI(CO)(PMe3)2 and BBr3. Reasonable pathways are suggested for their formation. ?Metallbase”?/acceptor interaction show up, on the one hand, in following reactions in case of the ligands with Sn acceptors, on the other hand, in significant changes of spectroscopic data for 8 . New compounds of sufficient stability were characterized by analytical (C, H) and spectroscopic (MS, IR. NMR) investigations.  相似文献   

11.
The development of inexpensive and effective catalysts for the epoxidation of olefins to epoxides, which are key commodities for the chemical industry, is a continuing challenge. In this context, we present a supramolecular solution with the development of new host-guest assemblies of sulfate ions and amidoammonium receptor cations that, for the first time, are shown to act as catalysts for olefin epoxidation by hydrogen peroxide under biphasic conditions. Analysis of the reaction mechanism shows that the reactive and oxidizing peroxymonosulfate is formed in the organic phase. Furthermore, a variety of readily available precursors may be used to form the supramolecular ion pairs (SIPs), which is enabling a large-scale synthesis of the catalysts while maintaining catalytic control and effectiveness.  相似文献   

12.
Christian Walter 《Tetrahedron》2009,65(28):5513-13543
A rhodium(I)-catalyzed activation of a silicon-boron linkage, that is, the transmetalation of silicon from boron to rhodium(I) by means of an RhI-OH complex, enables the conjugate transfer of nucleophilic silicon onto α,β-unsaturated acceptors. Pre- or in situ formed cationic rhodium(I)-binap complexes catalyze this novel carbon-silicon bond formation with exceptional enantiocontrol, 92 to >99% ee for cyclic carbonyl and carboxyl compounds as well as >99% ee for acyclic carboxyl compounds.  相似文献   

13.
An energy ratchet mechanism is exploited for the synthesis of a molecule. In the presence of adenosine triphosphate (ATP), hydrazone-bond formation between an aldehyde and hydrazide is accelerated and the composition at thermodynamic equilibrium is shifted towards the hydrazone. Enzymatic hydrolysis of ATP installs a kinetically stable state, at which hydrazone is present at a higher concentration compared to the composition at thermodynamic equilibrium in the presence of the degradation products of ATP. It is shown that the kinetic state has an enhanced catalytic activity in the hydrolysis of an RNA-model compound.  相似文献   

14.
It has been established that a RhI+/segphos complex catalyzes the [2+2+1] cycloaddition of 1,6‐diynes with cyclopropylideneacetamides to give substituted fulvenes in good yields. The reductive complexation of the product fulvenes with RhCl3 in EtOH furnished the corresponding dinuclear cyclopentadienyl RhIII complexes bearing a pendant amide moiety. These RhIII complexes were highly active catalysts for oxidative annulation and cyclization through C(sp2)−H and C(sp3)−H functionalization.  相似文献   

15.
The synthesis of the reactive PN(CH) ligand 2‐di(tert‐butylphosphanomethyl)‐6‐phenylpyridine ( 1H ) and its versatile coordination to a RhI center is described. Facile C?H activation occurs in the presence of a (internal) base, thus resulting in the new cyclometalated complex [RhI(CO)(κ3P,N,C‐ 1 )] ( 3 ), which has been structurally characterized. The resulting tridentate ligand framework was experimentally and computationally shown to display dual‐site proton‐responsive reactivity, including reversible cyclometalation. This feature was probed by selective H/D exchange with [D1]formic acid. The addition of HBF4 to 3 leads to rapid net protonolysis of the Rh?C bond to produce [RhI(CO)(κ3P,N,(C?H)‐ 1 )] ( 4 ). This species features a rare aryl C?H agostic interaction in the solid state, as shown by X‐ray diffraction studies. The nature of this interaction was also studied computationally. Reaction of 3 with methyl iodide results in rapid and selective ortho‐methylation of the phenyl ring, thus generating [RhI(CO)(κ2P,N‐ 1Me )] ( 5 ). Variable‐temperature NMR spectroscopy indicates the involvement of a RhIII intermediate through formal oxidative addition to give trans‐[RhIII(CH3)(CO)(I)(κ3P,N,C‐ 1 )] prior to C?C reductive elimination. The RhIIItrans‐diiodide complex [RhI(CO)(I)23P,N,C‐ 1 )] ( 6 ) has been structurally characterized as a model compound for this elusive intermediate.  相似文献   

16.
New monoanionic CNC pincer ligands, [N{SiMe2CH2(RIm)}2] (R = tBu, iPr, Ph) featuring three different N-heterocyclic carbenes and a disilylamido moiety is reported. Treatment of the lithium salt of [N{SiMe2CH2(RIm)}2] with CuIOTf afforded the corresponding copper complexes [N{SiMe2CH2(RIm)}2]Cu in 41–56 % yield. X-ray crystal structures of [N{SiMe2CH2(RIm)}2]Cu show that they are monomeric and feature three-coordinate, pseudo T-shaped copper(I) sites. The X-ray crystal structure of one of the precursor lithium complexes, [N{SiMe2CH2(tBuIm)}2]Li is also presented.  相似文献   

17.
18.
A rhodium(III)-catalyzed oxidative cyclization of chalcones with internal alkynes is reported, generating biologically important 3,3-disubstituted 1-indanones along with reusable aromatic aldehydes. This transformation features unique (4+1) reaction mode, excellent regioselectivity in alkyne insertion, broad substrate scope, allows for the construction of quaternary carbon centers, and is scalable. Steric hindrance from substrate and ligand probably controls the chemoselectivity of this carbocyclization. Importantly, this discovery enables a practical two-step protocol switching the overall reaction of acetophenones with internal alkynes from a (3+2) to a (4+1) annulation.  相似文献   

19.
Preparation and Catalytic Properties of Rhodium(I) Complex Salts of the Type [Rh(COD)(o-Py(CH2)2 P(Ph)(CH2)3ZR)]PF6 (Z = O, NH) . In dichloromethane solutions were reacted [Rh(COD)Cl]2 (COD = cis,cis-1.5-cyclooctadiene) with each of the four new ligands of the type o-Py(CH2)2P(Ph)(CH2)3ZR in the presence of the halogen scavenger TIPF6 at 0°C to complex salts [Rh(COD) (o-Py(CH2)2P(Ph)(CH2)3ZR]PF6 (ZR = OC2H5, I ; OPh, II ; NHPh, III ; NHcyclo? C6H11, IV ). The Rh1 complex cation in the obtained compounds I – IV coordinates besides the bedentate COD group the ligand donor atoms P und pyridinic N and the remaining donor atom Z is uncoodinated in an assumed square planar ligand geometry at the Rh central atom. In 1.4 dioxane solutions the complex catalysts I – IV polymerize at 25°C the substrate phenylacetylene (PA) to polyphenylacetylene (PPA): values of TON [h?1] between 352 ( I ) and 876 ( IV ), and average molecular weights Mw (GPC measurements) between 238 000 ( I ) and 199 900 ( IV ). These given values exhibit a dependency on the ZR group in complexes I – IV . The microstructure of isolated PPA is cis-transoidal. It is formed stereospezific and, based on MNDO calculations, is thermodynamically favoured. For the purpose of comparison, from both the newly synthesized compounds of the type [Rh(COD)DBN- (or DBU)Cl] (DBN = 1.5-Diazabi-cyclo[4.3.0.]non-5-en, DBU = 1.8-Diazabicycl0[5.4.0]- undec-7-en) was obtained a larger value of TON with 1292 (or 1327) [h?], but a lower value of M, with 166200 (or 131200). These catalysts including I –IV polymerize PA to PPA at a lower reaction temperature with improved selectivity and larger values of Mw as hitherto known catalyst systems.  相似文献   

20.
Five components spontaneously self‐assemble to yield the productive complex 1 , where one barium ion delivers an ethoxide to the carbonyl group of an amide substrate anchored by means of a distal carboxylate moiety to the other barium ion. High substrate specificity, fairly high reaction rates with catalytic turnover, and competitive inhibition by inert substrates are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号