首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Herein, a general and efficient method for the homogeneous cobalt‐catalyzed hydrogenation of N‐heterocycles, under mild reaction conditions, is reported. Key to success is the use of the tetradentate ligand tris(2‐(diphenylphosphino)phenyl)phosphine). This non‐noble metal catalyst system allows the selective hydrogenation of heteroarenes in the presence of a broad range of other sensitive reducible groups.  相似文献   

3.
4.
An efficient cobalt‐catalyzed asymmetric hydrogenation of C=N bonds has been realized. Chiral hydrazines were obtained in high yields and with excellent enantioselectivities (95–98 % ee). The hydrogenation went smoothly at up to 2000 substrate/catalyst and on a gram scale. The success of this reaction relies on the presence of an NHBz group in the substrates, with the reactivity and enantioselectivity improved by an assisted coordination to the cobalt atom and a nonbonding interaction with the ligand. Furthermore, this reaction has practical applications for the synthesis of several useful chiral nitrogen‐containing compounds.  相似文献   

5.
6.
Metal‐catalyzed aminocarbonylation is a standard approach for installing amide functionality in chemical synthesis. Despite broad application of this transformation using aryl or vinyl electrophiles, there are few examples involving unactivated aliphatic substrates. Furthermore, there are no stereocontrolled aminocarbonylations of alkyl electrophiles known. Herein, we report a stereospecific aminocarbonylation of unactivated alkyl tosylates for the synthesis of enantioenriched amides. This cobalt‐catalyzed transformation uses a remarkably broad range of amines and proceeds with excellent stereospecificity and chemoselectivity.  相似文献   

7.
8.
9.
Herein we describe the first homogeneous non‐noble metal catalyst for the hydrogenation of CO2 to methanol. The catalyst is formed in situ from [Co(acac)3], Triphos, and HNTf2 and enables the reaction to be performed at 100 °C without a decrease in activity. Kinetic studies suggest an inner‐sphere mechanism, and in situ NMR and MS experiments reveal the formation of the active catalyst through slow removal of the acetylacetonate ligands.  相似文献   

10.
11.
A cobalt‐catalyzed Z ‐selective hydrosilylation of alkynes has been developed relying on catalysts generated from bench‐stable Co(OAc)2 and pyridine‐2,6‐diimine (PDI) ligands. A variety of functionalized aromatic and aliphatic alkynes undergo this transformation, yielding Z ‐vinylsilanes in high yields with excellent selectivities (Z /E ratio ranges from 90:10 to >99:1). The addition of a catalytic amount of phenol effectively suppressed the Z /E ‐isomerization of the Z ‐vinylsilanes that formed under catalytic conditions.  相似文献   

12.
We report an asymmetric synthesis of enantioenriched gem‐bis(boryl)alkanes in an enantioselective diborylation of 1,1‐disubstituted alkenes catalyzed by Co(acac)2/(R)‐DM‐segphos. A range of activated and unactivated alkenes underwent this asymmetric diborylation in the presence of cyclooctene as a hydrogen acceptor, affording the corresponding gem‐bis(boryl)alkanes with high enantioselectivity. The synthetic utility of these chiral organoboronate compounds was demonstrated through several stereospecific derivatizations and the synthesis of sesquiterpene and sesquiterpenoid natural products.  相似文献   

13.
A highly regio‐ and enantioselective cobalt‐catalyzed sequential hydrosilylation/hydrogenation of alkynes was developed to afford chiral silanes. This one‐pot method is operationally simple and atom economic. It makes use of relatively simple and readily available starting materials, namely alkynes, silanes, and hydrogen gas, to construct more valuable chiral silanes. Primary mechanistic studies demonstrated that highly regioselective hydrosilylation of alkynes with silanes occurred as a first step, and the subsequent cobalt‐catalyzed asymmetric hydrogenation of the resulting vinylsilanes showed good enantioselectivity.  相似文献   

14.
15.
An intermolecular [2+2] cycloaddition reaction between an alkyne and an allene is reported. In the presence of a cobalt(I)/diphosphine catalyst, a near equimolar mixture of the alkyne and allene is converted into a 3‐alkylidenecyclobutene derivative in good yield with high regioselectivity. The reaction tolerates a variety of internal alkynes and mono‐ or disubstituted allenes bearing various functional groups. The reaction is proposed to involve regioselective oxidative cyclization of the alkyne and allene to form a 4‐alkylidenecobaltacyclopentene intermediate, with subsequent C?C reductive elimination.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号