首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite intensive research in surface enhanced Raman spectroscopy (SERS), the influence mechanism of chemical effects on Raman signals remains elusive. Here, we investigate such chemical effects through tip-enhanced Raman spectroscopy (TERS) of a single planar ZnPc molecule with varying but controlled contact environments. TERS signals are found dramatically enhanced upon making a tip–molecule point contact. A combined physico-chemical mechanism is proposed to explain such an enhancement via the generation of a ground-state charge-transfer induced vertical Raman polarizability that is further enhanced by the strong vertical plasmonic field in the nanocavity. In contrast, TERS signals from ZnPc chemisorbed flatly on substrates are found strongly quenched, which is rationalized by the Raman polarizability screening effect induced by interfacial dynamic charge transfer. Our results provide deep insights into the understanding of the chemical effects in TERS/SERS enhancement and quenching.  相似文献   

2.
Methods for chemical analysis at the nanometer scale are crucial for understanding and characterizing nanostructures of modern materials and biological systems. Tip‐enhanced Raman spectroscopy (TERS) combines the chemical information provided by Raman spectroscopy with the signal enhancement known from surface‐enhanced Raman scattering (SERS) and the high spatial resolution of atomic force microscopy (AFM) or scanning tunneling microscopy (STM). A metallic or metallized tip is illuminated by a focused laser beam and the resulting strongly enhanced electromagnetic field at the tip apex acts as a highly confined light source for Raman spectroscopic measurements. This Review focuses on the prerequisites for the efficient coupling of light to the tip as well as the shortcomings and pitfalls that have to be considered for TERS imaging, a fascinating but still challenging way to look at the nanoworld. Finally, examples from recent publications have been selected to demonstrate the potential of this technique for chemical imaging with a spatial resolution of approximately 10 nm and sensitivity down to the single‐molecule level for applications ranging from materials sciences to life sciences.  相似文献   

3.
We report an investigation of interfacial fluorinated hydrocarbon (carboxylic‐fantrip) monolayers by nanoscale imaging using tip‐enhanced Raman spectroscopy (TERS) and density functional theory (DFT) calculations. By comparing TERS images of a sub‐monolayer prepared by spin‐coating and a π–π‐stacked monolayer on Au(111) in which the molecular orientation is confined, specific Raman peaks shift and line widths narrow in the transferred LB monolayer. Based on DFT calculations that take into account dispersion corrections and surface selection rules, these specific effects are proposed to originate from π–π stacking and molecular orientation restriction. TERS shows the possibility to distinguish between a random and locked orientation with a spatial resolution of less than 10 nm. This work combines experimental TERS imaging with theoretical DFT calculations and opens up the possibility of studying molecular orientations and intermolecular interaction at the nanoscale and molecular level.  相似文献   

4.
硒化镉量子点膜的拉曼光谱及拉曼成像分析   总被引:3,自引:1,他引:3  
研究了CdSe量子点膜的Raman光谱,发现CdSe量子点的横模(TO)振动活性较强,表面模(SO)、纵模(LO)振动不明显。比较了量子点、氧化三辛基膦及十六胺的Raman光谱,证明量子点表面大部分区域被十六胺及二辛胺修饰。在此基础上,对量子点膜的TO模振动及C-H弯曲振动峰进行了Raman成像分析,并与明场图像进行了对比,表明拉曼成像信号对量子点膜的表面变化非常敏感。  相似文献   

5.
Tip-enhanced Raman spectroscopy (TERS) is a promising technique for structural studies of biological systems and biomolecules, owing to its ability to provide a chemical fingerprint with sub-diffraction-limit spatial resolution. This application of TERS has thus far been limited, due to difficulties in generating high field enhancements while maintaining biocompatibility. The high sensitivity achievable through TERS arises from the excitation of a localized surface plasmon resonance in a noble metal atomic force microscope (AFM) tip, which in combination with a metallic surface can produce huge enhancements in the local optical field. However, metals have poor biocompatibility, potentially introducing difficulties in characterizing native structure and conformation in biomolecules, whereas biocompatible surfaces have weak optical field enhancements. Herein, a novel, biocompatible, highly enhancing surface is designed and fabricated based on few-monolayer mica flakes, mechanically exfoliated on a metal surface. These surfaces allow the formation of coupled plasmon enhancements for TERS imaging, while maintaining the biocompatibility and atomic flatness of the mica surface for high resolution AFM. The capability of these substrates for TERS is confirmed numerically and experimentally. We demonstrate up to five orders of magnitude improvement in TERS signals over conventional mica surfaces, expanding the sensitivity of TERS to a wide range of non-resonant biomolecules with weak Raman cross-sections. The increase in sensitivity obtained through this approach also enables the collection of nanoscale spectra with short integration times, improving hyperspectral mapping for these applications. These mica/metal surfaces therefore have the potential to revolutionize spectromicroscopy of complex, heterogeneous biological systems such as DNA and protein complexes.  相似文献   

6.
Determining the adsorption configurations of organic molecules on surfaces, especially for relatively small molecules, is a key issue for understanding the microscopic physical and chemical processes in surface science. In this work, we have applied low-temperature ultrahigh-vacuum tip-enhanced Raman scattering (TERS) technique to distinguish the configurations of small 4,4′-bipyridine (44BPY) molecules adsorbed on the Ag(111) surface. The observed Raman spectra exhibit notable differences in the spectral features which can be assigned to three different molecular orientations, each featuring a specific fingerprint pattern based on the TERS selection rule that determines the distribution of the relative intensities of different vibrational peaks. Furthermore, such a small molecule can in turn act as a local probe to provide information on the local electric field distribution at the tip apex. Our work showcases the capability of TERS technique for obtaining information on adsorption configurations of small molecules on surfaces down to the single-molecule level, which is of fundamental importance for many applications in the fields of molecular science and surface chemistry.  相似文献   

7.
利用扫描技术获取活体小鼠耳朵组织不同深度的微区拉曼光谱,选取分别归属于血糖、脂类、血红蛋白、蛋白质分子结构的物质的特征谱带1125,1300,1549和1660 cm"1进行峰面积计算,利用这些数据重建二维三维拉曼光谱图像。图像清晰显示了不同物质在活体组织中空间分布情况。实验表明,活体拉曼成像技术可以成为活体研究的新手段。  相似文献   

8.
An understanding of the photoisomerization mechanism of molecules bound to a metal surface at the molecular scale is required for designing photoswitches at surfaces. It has remained a challenge to correlate the surface structure and isomerization of photoswitches at ambient conditions. Herein, the photoisomerization of a self‐assembled monolayer of azobenzene‐thiol molecules on a Au surface was investigated using scanning tunneling microscopy and tip‐enhanced Raman spectroscopy. The unique signature of the cis isomer at 1525 cm?1 observed in tip‐enhanced Raman spectra was clearly distinct from the trans isomer. Furthermore, tip‐enhanced Raman images of azobenzene thiols after ultraviolet and blue light irradiation are shown with nanoscale spatial resolution, demonstrating a reversible conformational change. Interestingly, the cis isomers of azobenzene‐thiol molecules were preferentially observed at Au grain edges, which is confirmed by density functional theory.  相似文献   

9.
基于拉曼光谱成像技术对小麦粉中过氧化苯甲酰和L-抗坏血酸进行快速、 无损、 原位检测, 并对2种添加剂的空间分布进行了可视化研究. 采用实验室自行搭建的线扫描式拉曼光谱成像系统, 激发光源波长为785 nm, 有效光谱范围为0~2885.7 cm-1. 分别在小麦粉中添加含量为0.1%~30%的过氧化苯甲酰和L-抗坏血酸, 对制备的样品进行拉曼光谱扫描, 选取感兴趣区域的光谱信号进行平均, 得到平均光谱代表该样品的拉曼信息. 分别选取过氧化苯甲酰和L-抗坏血酸的2个特征峰, 与该物质在小麦粉中的含量建立线性关系, 其决定系数R2分别为0.9828 和0.9912. 采集的特征波段拉曼图像经过自适应迭代重加权惩罚最小二乘(airPLS)方法扣除荧光背景后, 选取合适的特征峰强度作为阈值, 对校正拉曼图像进行二值化分析, 得到添加物的空间分布可视化图像. 该方法与点检测拉曼技术相比, 具有检测结果准确且检测时间较短的优势, 且可以实现不均匀样品中多种物质的同时检测与分布可视化.  相似文献   

10.
We report a Raman characterization of the α borophene polymorph by scanning tunneling microscopy combined with tip-enhanced Raman spectroscopy. A series of Raman peaks were discovered, which can be well related with the phonon modes calculated based on an asymmetric buckled α structure. The unusual enhancement of high-frequency Raman peaks in TERS spectra of α borophene is found and associated with its unique buckling when landed on the Ag(111) surface. Our paper demonstrates the advantages of TERS, namely high spatial resolution and selective enhancement rule, in studying the local vibrational properties of materials in nanoscale.  相似文献   

11.
Operando shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) with on-line mass spectrometry (MS) has been used to investigate the surface species, such as NO, NOH, NO2, N2O, and reaction products of the NO reduction reaction with CO and H2 over supported Rh-based catalysts in the form of catalyst extrudates. By correlating surface intermediates and reaction products, new insights in the reaction mechanism could be obtained. Upon applying different reaction conditions (i. e., H2 or CO), the selectivity of the catalytic reaction could be tuned towards the formation of N2. Furthermore, in the absence of Rh, no reaction products were detected. The importance of the operando SHINERS as a surface-sensitive characterization technique in the field of heterogeneous catalysis provides routes towards a better understanding of catalytic performance.  相似文献   

12.
Bilayer (BL) two-dimensional boron (i.e., borophene) has recently been synthesized and computationally predicted to have promising physical properties for a variety of electronic and energy technologies. However, the fundamental chemical properties of BL borophene that form the foundation of practical applications remain unexplored. Here, we present atomic-level chemical characterization of BL borophene using ultrahigh vacuum tip-enhanced Raman spectroscopy (UHV-TERS). UHV-TERS identifies the vibrational fingerprint of BL borophene with angstrom-scale spatial resolution. The observed Raman spectra are directly correlated with the vibrations of interlayer boron–boron bonds, validating the three-dimensional lattice geometry of BL borophene. By virtue of the single-bond sensitivity of UHV-TERS to oxygen adatoms, we demonstrate the enhanced chemical stability of BL borophene compared to its monolayer counterpart by exposure to controlled oxidizing atmospheres in UHV. In addition to providing fundamental chemical insight into BL borophene, this work establishes UHV-TERS as a powerful tool to probe interlayer bonding and surface reactivity of low-dimensional materials at the atomic scale.  相似文献   

13.
现场表面拉曼光谱研究Ni-P合金电沉积机理   总被引:2,自引:0,他引:2  
由于Ni P合金具有许多优越的物理和化学性能 ,如高的耐蚀性[1]、好的电催化特性[2,3]以及好的非磁特性[4,5],人们对这种合金的沉积方法进行了大量的研究.磷是一种不能从水溶液中单独进行电沉积的元素 ,但它很容易和铁组元素共沉积.为了解释这一现象 ,Brenner曾提出直接机理[6].认为镀液中磷的含氧酸 (根 )直接在电极上还原成合金中的磷.然而 ,磷不能用电化学方法以纯态沉积出来,所以直接机理没有被广泛接受.第二种是由Fedot′ev等提出的间接机理[7],认为磷的含氧酸(根)首先还原成磷化氢(PH…  相似文献   

14.
Aromatic side chains are important reporters of the plasticity of proteins, and often form important contacts in protein–protein interactions. We studied aromatic residues in the two structurally homologous cross-β amyloid fibrils HET-s, and HELLF by employing a specific isotope-labeling approach and magic-angle-spinning NMR. The dynamic behavior of the aromatic residues Phe and Tyr indicates that the hydrophobic amyloid core is rigid, without any sign of “breathing motions” over hundreds of milliseconds at least. Aromatic residues exposed at the fibril surface have a rigid ring axis but undergo ring flips on a variety of time scales from nanoseconds to microseconds. Our approach provides direct insight into hydrophobic-core motions, enabling a better evaluation of the conformational heterogeneity generated from an NMR structural ensemble of such amyloid cross-β architecture.  相似文献   

15.
Understanding structure–composition–property relationships in zeolite‐based materials is critical to engineering improved solid catalysts. However, this can be difficult to realize as even single zeolite crystals can exhibit heterogeneities spanning several orders of magnitude, with consequences for, for example, reactivity, diffusion as well as stability. Great progress has been made in characterizing these porous solids using tomographic techniques, though each method has an ultimate spatial resolution limitation. Atom probe tomography (APT) is the only technique so far capable of producing 3D compositional reconstructions with sub‐nanometer‐scale resolution, and has only recently been applied to zeolite‐based catalysts. Herein, we discuss the use of APT to study zeolites, including the critical aspects of sample preparation, data collection, assignment of mass spectral peaks including the predominant CO peak, the limitations of spatial resolution for the recovery of crystallographic information, and proper data analysis. All sections are illustrated with examples from recent literature, as well as previously unpublished data and analyses to demonstrate practical strategies to overcome potential pitfalls in applying APT to zeolites, thereby highlighting new insights gained from the APT method.  相似文献   

16.
Molecular recognition of complex isomeric biomolecules remains challenging in surface-enhanced Raman scattering (SERS) spectroscopy due to their small Raman cross-sections and/or poor surface affinities. To date, the use of molecular probes has achieved excellent molecular sensitivities but still suffers from poor spectral specificity. Here, we induce “charge and geometry complementarity” between probe and analyte as a key strategy to achieve high spectral specificity for effective SERS molecular recognition of structural analogues. We employ 4-mercaptopyridine (MPY) as the probe, and chondroitin sulfate (CS) disaccharides with isomeric sulfation patterns as our proof-of-concept study. Our experimental and in silico studies reveal that “charge and geometry complementarity” between MPY's binding pocket and the CS sulfation patterns drives the formation of site-specific, multidentate interactions at the respective CS isomerism sites, which “locks” each CS in its analogue-specific complex geometry, akin to molecular docking events. Leveraging the resultant spectral fingerprints, we achieve > 97 % classification accuracy for 4 CSs and 5 potential structural interferences, as well as attain multiplex CS quantification with < 3 % prediction error. These insights could enable practical SERS differentiation of biologically important isomers to meet the burgeoning demand for fast-responding applications across various fields such as biodiagnostics, food and environmental surveillance.  相似文献   

17.
Two-dimensional distributions of the impurity carbon (sp2-bonded carbon), crystallinity, and tensile stresses in a(Ⅲ) oriented diamond crystal of a diamond thin film were studied by using Raman imaging microscopy. The amount of the impurity carbon was more in the center of (Ⅲ) plane than in the circumference of the plane. The crystallinity and tensile stress were also higher in the center than in the circumference. Based on those two-dimesional distributions, we discuss the boundary structure between diamond carbon and sp2-bonded carbon in CVD diamond.  相似文献   

18.
The electrochemical activation of CuInS2/MoSx for photoelectrochemical (PEC) H2 production was revealed for the first time through in operando Raman spectroscopy. During the activation process, the initial metallic MoSx phase was transformed to semiconducting MoSx, which facilitates charge carrier transfer between CuInS2 and MoSx. Ex situ X-ray photoelectron spectroscopy and Raman spectroscopy suggest the existence of MoO3 after the activation process. However, apart from contradicting these results, in operando Raman spectroscopy revealed some of the intermediate steps of the activation process.  相似文献   

19.
A family of three neutral iridium(III) tetrazolato complexes are investigated as bacterial imaging agents. The complexes offer a facile tuning of the emission colour from green (520 nm) to red (600 nm) in aqueous media, while keeping the excitation wavelength unchanged. The three complexes do not inhibit the bacterial growth of Bacillus Cereus, used as a model in this study, and exhibit extremely fast cellular uptake. After a minute incubation time, the nontoxic complexes show subcellular localisation in spherical structures identified as lipid vacuoles. Confocal Raman imaging has been exploited for the first time on live bacteria, to provide direct and label-free mapping of the lipid-enriched organelles within B. cereus, complementing the use of luminescent probes. Examination of the Raman spectra not only confirmed the presence of lipophilic inclusions in B. cereus but offered additional information about their chemical composition, suggesting that the lipid vacuoles may contain polyhydroxybutyrate (PHB).  相似文献   

20.
利用光镊拉曼光谱技术研究吲哚对金葡菌细胞中葡萄球菌黄素合成的抑制作用以及色素含量在分批培养过程中的动态变化。收集经不同浓度吲哚(终浓度为0,0.2,0.6,0.8,1.2和1.5 mmol/L)处理后的以及不同培养时间的金葡菌单细胞的拉曼光谱,以光谱1523 cm-1峰强度表征色素含量,并与紫外可见分光光度法得到的结果进行比较。结果表明,细菌拉曼光谱1523 cm-1峰强度与分光光度法测得的色素含量有良好的线性关系,相关系数达0.9772;群体和单细胞水平的光谱数据均表明,吲哚可剂量依赖性地抑制葡萄球菌黄素的合成,色素含量降低幅度超过70%;在分批培养中细菌色素含量在对数生长中期(12 h)达到最大值,各个时间点的群体内部细胞间色素含量的异质性较小,RSD在39.2%~61.1%之间。本研究表明光镊拉曼光谱技术是一种在单细胞水平分析葡萄球菌黄素含量的可靠方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号