首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Aqueous copper metal batteries with acidic electrolytes are regarded as promising candidates for low-temperature energy storage, benefiting from fast kinetics of protons and acid resistance of copper. Here, a Cu(BF4)2 electrolyte that spontaneously generates protons is developed for ultralow-temperature copper metal batteries. Systematic studies demonstrate that the hydrolysis of BF4 generates more protons, rendering the Cu(BF4)2 among the most effective aqueous electrolyte capable of breaking hydrogen bonds in water molecules. This electrolyte endows a polyaniline/Cu battery to deliver a short charging time of 21 s and a charge/discharge capability of up to 10 A g−1 at −30 °C, along with a high discharge specific capacity of 70 mAh g−1 and a supercapacitor-comparable power density of 3000 W kg−1. Furthermore, it can exhibit a long and stable cycling lifespan over 10 000 cycles at −50 °C and works well at −70 °C. This work provides an opportunity for intrinsically acidic electrolytes.  相似文献   

2.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

3.
Potassium-ion batteries (PIBs) are promising for cryogenic energy storage. However, current researches on low-temperature PIBs are limited to half cells utilizing potassium metal as an anode, and realizing rechargeable full cells is challenged by lacking viable anode materials and compatible electrolytes. Herein, a hard carbon (HC)-based low-temperature potassium-ion full cell is successfully fabricated for the first time. Experimental evidence and theoretical analysis revealed that potassium storage behaviors of HC anodes in the matched low-temperature electrolyte involve defect adsorption, interlayer co-intercalation, and nanopore filling. Notably, these unique potassiation processes exhibited low interfacial resistances and small reaction activation energies, enabling an excellent cycling performance of HC with a capacity of 175 mAh g−1 at −40 °C (68 % of its room-temperature capacity). Consequently, the HC-based full cells demonstrated impressive rechargeability and high energy density above 100 Wh kg−1cathode at −40 °C, representing a significant advancement in the development of PIBs.  相似文献   

4.
The brain-storm of designing low-cost and commercialized eutectic electrolytes for zinc (Zn)-based electrochemical energy storage (ZEES) remains unresolved and attractive, especially when implementing it at low temperatures. Here, we report an appealing layout of advancing chlorine-functionalized eutectic (Cl-FE) electrolytes via exploiting Cl anion-induced eutectic interaction with Zn acetate solutions. This novel eutectic liquid shows high affinity to collaborate with 1,3-dioxolane (DOL) and is prone to constitute Cl-FE/DOL-based electrolytes with a unique inner/outer eutectic solvation sheath for the better regulation of Zn-solvating neighboring and reconstruction of H-bonding. The side reactions are effectively restricted on Zn anodes and a high Coulombic efficiency of 99.5 % can be achieved over 1000 cycles at −20 °C with Zn//Cu setups. By prototyping scale-up Zn-ion pouch cells using the optimal eutectic liquid of 3ZnOAc1.2Cl1.8-DOL, we obtain improved electrochemical properties at −20 °C with a high capacitance of 203.9 F g−1 at 0.02 A g−1 in a range of 0.20–1.90 V and long-term cycling ability with 95.3 % capacitance retention at 0.2 A g−1 over 3,000 cycles. Overall, the proposal of ideal Cl-FE/DOL-based electrolytes guides the design of sub-zero and endurable aqueous ZEES devices and beyond.  相似文献   

5.
Advanced aqueous batteries are promising for next generation flexible devices owing to the high safety, yet still requiring better cycling stability and high capacities in wide temperature range. Herein, a polymeric acid hydrogel electrolyte (PAGE) with 3 M Zn(ClO4)2 was fabricated for high performance Zn/polyaniline (PANI) batteries. With PAGE, even at −35 °C the Zn/Zn symmetrical battery can keep stable for more than 1 500 h under 2 mA cm−2, and the Zn/PANI battery can provide ultra-high stable specific capacity of 79.6 mAh g−1 for more than 70 000 cycles at 15 A g−1. This can be mainly ascribed to the −SO3H+ function group in PAGE. It can generate constant protons and guide the (002) plane formation to accelerate the PANI redox reaction kinetics, increase the specific capacity, and suppress the side reaction and dendrites. This proton-supplying strategy by polymeric acid hydrogel may further propel the development of high performance aqueous batteries.  相似文献   

6.
Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl, ice-like water clusters form, and H⋅⋅⋅Cl bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.  相似文献   

7.
High-voltage lithium metal batteries (LMBs) pose severe challenges for the matching of electrolytes with aggressive electrodes, especially at low temperatures. Here, we report a rational modification of the Li+ solvation structure to extend the voltage and temperature operating ranges of conventional electrolytes. Ion-ion and ion-dipole interactions as well as the electrochemical window of solvents were tailored to improve oxidation stability and de-solvation kinetics of the electrolyte. Meanwhile, robust and elastic B and F-rich interphases are formed on both electrodes. Such optimization enables Li||LiNi0.5Mn1.5O4 cells (90.2 % retention after 400 cycles) and Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells (74.0 % retention after 200 cycles) to cycle stably at an ultra-high voltage of 4.9 V. Moreover, NCM622 cells deliver a considerable capacity of 143.5 mAh g−1 at −20 °C, showing great potential for practical uses. The proposed strategy sheds light on further optimization for high-voltage LMBs.  相似文献   

8.
Sluggish storage kinetics and insufficient performance are the major challenges that restrict the transition metal dichalcogenides (TMDs) applied for zinc ion storage, especially at the extreme temperature conditions. Herein, a multiscale interface structure-integrated modulation concept was presented, to unlock the omnidirectional storage kinetics-enhanced porous VSe2−xn H2O host. Theory research indicated that the co-modulation of H2O intercalation and selenium vacancy enables enhancing the interfacial zinc ion capture ability and decreasing the zinc ion diffusion barrier. Moreover, an interfacial adsorption-intercalation pseudocapacitive storage mechanism was uncovered. Such cathode displayed remarkable storage performance at the wide temperature range (−40–60 °C) in aqueous and solid electrolytes. In particular, it can retain a high specific capacity of 173 mAh g−1 after 5000 cycles at 10 A g−1, as well as a high energy density of 290 Wh kg−1 and a power density of 15.8 kW kg−1 at room temperature. Unexpectedly, a remarkably energy density of 465 Wh kg−1 and power density of 21.26 kW kg−1 at 60 °C also can be achieved, as well as 258 Wh kg−1 and 10.8 kW kg−1 at −20 °C. This work realizes a conceptual breakthrough for extending the interfacial storage limit of layered TMDs to construct all-climate high-performance Zn-ion batteries.  相似文献   

9.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

10.
As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2/Zn(CF3SO3)2/Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4-based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple −OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3SO3)2/Zn(TFSI)2-based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1 C and 91.4 % capacity remaining under 20 C. After scaling up to the pouch cell with a record mass loading of 33.3 mg cm−2, super-high-capacity retention of 96.7 % is achieved after 500 cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design.  相似文献   

11.
The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized −COO functional groups. The polarized −COO groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the −COO groups in PAM-SC can fix H2O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm−1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at −40 °C, showing the application prospect under extreme conditions.  相似文献   

12.
Cu−Li batteries leveraging the two-electron redox property of Cu can offer high energy density and low cost. However, Cu−Li batteries are plagued by limited solubility and a shuttle effect of Cu ions in traditional electrolytes, which leads to low energy density and poor cycling stability. In this work, we rationally design a solid-state sandwich electrolyte for solid-state Cu−Li batteries, in which a deep-eutectic-solvent gel with high Cu-ion solubility is devised as a Cu-ion reservoir while a ceramic Li1.4Al0.4Ti1.6(PO4)3 interlayer is used to block Cu-ion crossover. Because of the high ionic conductivity (0.55 mS cm−1 at 25 °C), wide electrochemical window (>4.5 V vs. Li+/Li), and high Cu ion solubility of solid-state sandwich electrolyte, a solid-state Cu−Li battery demonstrates a high energy density of 1 485 Wh kgCu−1and long-term cyclability with 97 % capacity retention over 120 cycles. The present study lays the groundwork for future research into low-cost solid-state Cu−Li batteries.  相似文献   

13.
Rechargeable aqueous zinc batteries (RAZB) have been re-evaluated because of the superiority in addressing safety and cost concerns. Nonetheless, the limited lifespan arising from dendritic electrodeposition of metallic Zn hinders their further development. Herein, a metal–organic framework (MOF) was constructed as front surface layer to maintain a super-saturated electrolyte layer on the Zn anode. Raman spectroscopy indicated that the highly coordinated ion complexes migrating through the MOF channels were different from the solvation structure in bulk electrolyte. Benefiting from the unique super-saturated front surface, symmetric Zn cells survived up to 3000 hours at 0.5 mA cm−2, near 55-times that of bare Zn anodes. Moreover, aqueous MnO2–Zn batteries delivered a reversible capacity of 180.3 mAh g−1 and maintained a high capacity retention of 88.9 % after 600 cycles with MnO2 mass loading up to 4.2 mg cm−2.  相似文献   

14.
Herein, we successfully construct bifunctional electrocatalysts by synthesizing atomically dispersed Fe−Se atom pairs supported on N-doped carbon (Fe−Se/NC). The obtained Fe−Se/NC shows a noteworthy bifunctional oxygen catalytic performance with a low potential difference of 0.698 V, far superior to that of reported Fe-based single-atom catalysts. The theoretical calculations reveal that p-d orbital hybridization around the Fe−Se atom pairs leads to remarkably asymmetrical polarized charge distributions. Fe−Se/NC based solid-state rechargeable Zn-air batteries (ZABs−Fe−Se/NC) present stable charge/discharge of 200 h (1090 cycles) at 20 mA cm−2 at 25 °C, which is 6.9 times of ZABs−Pt/C+Ir/C. At extremely low temperature of −40 °C, ZABs−Fe−Se/NC displays an ultra-robust cycling performance of 741 h (4041 cycles) at 1 mA cm−2, which is about 11.7 times of ZABs−Pt/C+Ir/C. More importantly, ZABs−Fe−Se/NC could be operated for 133 h (725 cycles) even at 5 mA cm−2 at −40 °C.  相似文献   

15.
Zn−I2 batteries stand out in the family of aqueous Zn-metal batteries (AZMBs) due to their low-cost and immanent safety. However, Zn dendrite growth, polyiodide shuttle effect and sluggish I2 redox kinetics result in dramatically capacity decay of Zn−I2 batteries. Herein, a Janus separator composed of functional layers on anode/cathode sides is designed to resolve these issues simultaneously. The cathode layer of Fe nanoparticles-decorated single-wall carbon nanotubes can effectively anchor polyiodide and catalyze the redox kinetics of iodine species, while the anode layer of cation exchange resin rich in −SO3 groups is beneficial to attract Zn2+ ions and repel detrimental SO42−/polyiodide, improving the stability of cathode/anode interfaces synergistically. Consequently, the Janus separator endows outstanding cycling stability of symmetrical cells and high-areal-capacity Zn−I2 batteries with a lifespan over 2500 h and a high-areal capacity of 3.6 mAh cm−2.  相似文献   

16.
Rechargeable lithium batteries are one of the most appropriate energy storage systems in our electrified society, as virtually all portable electronic devices and electric vehicles today rely on the chemical energy stored in them. However, sub-zero Celsius operation, especially below −20 °C, remains a huge challenge for lithium batteries and greatly limits their application in extreme environments. Slow Li+ diffusion and charge transfer kinetics have been identified as two main origins of the poor performance of RLBs under low-temperature conditions, both strongly associated with the liquid electrolyte that governs bulk and interfacial ion transport. In this review, we first analyze the low-temperature kinetic behavior and failure mechanism of lithium batteries from an electrolyte standpoint. We next trace the history of low-temperature electrolytes in the past 40 years (1983–2022), followed by a comprehensive summary of the research progress as well as introducing the state-of-the-art characterization and computational methods for revealing their underlying mechanisms. Finally, we provide some perspectives on future research of low-temperature electrolytes with particular emphasis on mechanism analysis and practical application.  相似文献   

17.
Anionic polymerization of N-methacryloyl-2-methylaziridine ( 1 ) proceeded with 1,1-diphenyl-3-methylpentyllithium (DMPLi) in the presence of LiCl or Et2Zn to give the polymers possessing predicted molecular weights and narrow molecular weight distributions (Mw/Mn < 1.1) at −78 ∼ −40 °C in THF. In each polymerization initiated with DMPLi/LiCl at the various temperatures ranging from −40 to −60 °C, the linear relationship between polymerization time and conversion of monomer was obtained from the GLC analysis. The rate constant and the activation energy of the anionic polymerization for 1 were determined as follows: ln k = −5.85 × 103/T + 23.3 L mol−1 s−1 and 49 ± 4 kJ mol−1, respectively. Poly( 1 ) showed the glass transition temperature at 98 °C, and gave the insoluble product at higher temperature around 150 °C through the thermal cross-linking of highly strained N-acyl-aziridine moiety.  相似文献   

18.
Carbonate electrolytes have excellent chemical stability and high salt solubility, which are ideally practical choice for achieving high-energy-density sodium (Na) metal battery at room temperature. However, their application at ultra-low temperature (−40 °C) is adversely affected by the instability of solid electrolyte interphase (SEI) formed by electrolyte decomposition and the difficulty of desolvation. Here, we designed a novel low-temperature carbonate electrolyte by molecular engineering on solvation structure. The calculations and experimental results demonstrate that ethylene sulfate (ES) reduces the sodium ion desolvation energy and promotes the forming of more inorganic substances on the Na surface, which promote ion migration and inhibit dendrite growth. At −40 °C, the Na||Na symmetric battery exhibits a stable cycle of 1500 hours, and the Na||Na3V2(PO4)3 (NVP) battery achieves 88.2 % capacity retention after 200 cycles.  相似文献   

19.
Sulfide electrolytes with high ionic conductivities are one of the most highly sought for all-solid-state lithium batteries (ASSLBs). However, the non-negligible electronic conductivities of sulfide electrolytes (≈10−8 S cm−1) lead to electron smooth transport through the sulfide electrolyte pellets, resulting in Li dendrite directly depositing at the grain boundaries (GBs) and serious self-discharge. Here, a grain-boundary electronic insulation (GBEI) strategy is proposed to block electron transport across the GBs, enabling Li−Li symmetric cells with 30 times longer cycling life and Li−LiCoO2 full cells with three times lower self-discharging rate than pristine sulfide electrolytes. The Li−LiCoO2 ASSLBs deliver high capacity retention of 80 % at 650 cycles and stable cycling performance for over 2600 cycles at 0.5 mA cm−2. The innovation of the GBEI strategy provides a new direction to pursue high-performance ASSLBs via tailoring the electronic conductivity.  相似文献   

20.
Zn-I2 batteries have attracted attention due to their low cost, safety, and environmental friendliness. However, their performance is still limited by the irreversible growth of Zn dendrites, hydrogen evolution reactions, corrosion, and shuttle effect of polyiodide. In this work, we have prepared a new porous polymer (CD-Si) by nucleophilic reaction of β-cyclodextrin with SiCl4, and CD-Si is applied to the solid polymer electrolyte (denoted PEO/PVDF/CD-Si) to solve above-mentioned problems. Through the anchoring of the CD-Si, a conductive network with dual transmission channels was successfully constructed. Due to the non-covalent anchoring effect, the ionic conductivity of the solid polymer electrolytes (SPE) can reach 1.64×10−3 S cm−1 at 25 °C. The assembled symmetrical batteries can achieve highly reversible dendrite-free galvanizing/stripping (stable cycling for 7500 h at 5 mA cm−2 and 1200 h at 20 mA cm−2). The solid-state Zn-I2 battery shows an ultra-long life of over 35,000 cycles at 2 A g−1. Molecular dynamics simulations are performed to elucidate the working mechanism of CD-Si in the polymer matrix. This work provides a novel strategy towards solid electrolytes for Zn-I2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号