首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
研究了非晶层占比对半导体器件透射电子显微镜(TEM)样品成像的影响。聚焦离子束(FIB)是制备TEM样品的重要工具,在TEM样品制备过程中,离子束损伤会在样品表面产生非晶层而使TEM图像产生畸变失真。在28 nm技术节点以下半导体器件TEM样品制备中,传统的制备方法会使样品在TEM下呈现非晶像或者图像质量不佳而不再适用。制备了一种楔形样品并使用平面转截面的样品制备方法研究了TEM呈晶格像时和非晶层临界占比的关系。实验表明,当样品中非晶层的占比超过0.66时,其在TEM下的成像为非晶像;当低于这一数值时,其在TEM下的成像为晶格像。针对非晶层对样品成像的影响,使用了一种低电压减薄的制备方法,通过降低非晶层占比可以显著优化表面成像,提高TEM样品的质量。  相似文献   

2.
制备高质量纳米尺度芯片透射电子显微镜(TEM)样品对于探索半导体器件结构设计、材料分布与芯片性能之间的关系具有重要的意义。使用聚焦离子束(FIB)/扫描电子显微镜(SEM)双束系统制备14 nm鳍式场效应晶体管(FinFET)截面TEM样品,制备过程中从技术角度提出了两种自下而上制样方案来抑制窗帘效应。为扩大样品的可表征视场范围,在避免样品弯曲的前提下,提出了一种薄片提取方法。结果表明,离子束流越大,窗帘效应越严重,自下而上方法能有效规避窗帘效应;离子束电压30 kV时采用清洗截面(CCS)模式、5 kV/2 kV时采用矩形模式,样品台倾斜补偿角度为1.5°~3.5°,进行交叉减薄,且最终铣削长度控制在1μm时减薄效果最好;新的薄片提取方法改变了样品的铣削方向,在避免窗帘效应破坏感兴趣结构和样品弯曲的前提下,将样品的可表征视场范围扩大了5倍。研究结果对优化TEM样品制备方法以及芯片失效分析提供了参考。  相似文献   

3.
聚焦离子束(FIB)的透射电镜制样   总被引:4,自引:0,他引:4  
亚微米IC芯片的发展,对于TEM在IC的失效分析和工艺监控过程中所担负的工作提出了越来越高的要求。许多方法和手段被用于解决TEM制样这个问题[1]。FIB技术被证明为现今最有效的精确定位制样的方法[2]。原有TEM制样技术的定位减薄难,单次制样成功率低,且对单一器件的定位能力差的难题,可通过电视监测和聚焦离子磨削的方法加以克服。利用这种技术,可以完成以往难以实现的IC芯片的精密定位制样工作,使透射电镜在亚微米级IC的分析中达到实用性阶段。本文介绍该技术使用的具体方法。实验过程实验所用设备为美国fei.公司所生产的FIB200型…  相似文献   

4.
5.
基于聚焦离子束注入的微纳加工技术研究   总被引:1,自引:0,他引:1  
提出了聚焦离子束注入(focused ion beam implantation,FIBI)和聚焦离子束XeF2气体辅助刻蚀(gas assisted etching,GAE)相结合的微纳加工技术。通过扫描电镜观察FIBI横截面研究了聚焦离子束加工参数与离子注入深度的关系。当镓离子剂量大于1.4×1017ion/cm2时,聚焦离子束注入层中观察到均匀分布、直径10~15nm的纳米颗粒层。以此作为XeF2气体反应的掩膜,利用聚焦离子束XeF2气体辅助刻蚀(FIB-GAE)技术实现了多种微纳米级结构和器件加工,如纳米光栅、纳米电极和微正弦结构等。结果表明该方法灵活高效,很有发展前途。  相似文献   

6.
聚焦离子束( FIB)技术越来越广泛地应用于纳米加工等领域,其加工机理的研究是该技术发展的重要基础。本文针对纳米结构加工过程中聚焦离子束对加工精度的影响规律,基于蒙特卡罗法的SRIM程序,对离子轰击硅、金、铬等典型基底进行了仿真分析与建模,研究了Ga+、He+、Ne+不同离子束的入射能量对入射深度、能量损伤、横向离散等参数的影响规律,解释了He+在加工小于10nm线宽结构中的优势及其加工中存在的新现象。结果表明,在FIB加工过程中可采用不同的离子束源,进行加工结构的工艺优化。  相似文献   

7.
研究了使用聚焦离子束(FIB)方法制备低k介质的TEM样品时离子束参数对介质微观形貌的影响,发现低k介质的微观形貌与离子束参数具有较强的相关性。传统大离子束流、高加速电压的FIB参数将导致低k介质多孔性增加、致密度下降;且k值越低,离子束参数影响越大。对于亚65nm工艺中使用的k值为2.7的介质,当离子束流减小到50pA、加速电压降低到5kV时,FIB制样方法对介质致密度的影响基本可忽略,样品微观形貌得到了显著改善;而对于65nm工艺中使用的k值为3.0的介质,其微观形貌受离子束参数的影响则相对较小。  相似文献   

8.
透射电镜样品的厚度是透射电镜(TEM)表征中一个重要参数,快速准确地判断样品厚度是制备高质量样品的前提.本文通过使用聚焦离子束(FIB)制备了带有厚度梯度的透射电镜样品(Si、SrTiO3和LaAlO3),并提出两种制样过程中快速判断厚度的方法.第一种通过扫描电子显微镜(SEM)的衬度变化经验地判断样品的厚度;第二种是用FIB在样品边缘切一个斜边,通过SEM测量斜边侧面的宽度用几何方法推断样品的厚度.这两种方法都通过会聚束电子衍射(CBED)和电子能量损失谱(EELS)测量的厚度作为检验标准.对比认为,样品较薄时用SEM衬度测厚比较合适;样品比较厚时用几何方法测量比较直接.  相似文献   

9.
在纳米加工技术中,利用透射电子显微镜(TEM)中的电子束辐照诱导低维纳米材料制备异质结构的加工方式因具有广阔的应用前景而备受瞩目.利用成熟的聚焦电子束原位辐照技术,通过改变电子束辐照时的强度和位置对喷金非晶SiOx纳米线进行原位辐照,诱导其结构发生变化,从而实现结构加工.实验结果显示,当束斑直径大于纳米线直径的聚焦电子...  相似文献   

10.
《微纳电子技术》2019,(4):314-318
X射线波带片是X射线显微成像系统中用于聚焦及成像的核心元件,提高波带片性能参数,更利于X射线显微成像技术的广泛应用。选择可精确控制厚度的原子层沉积(ALD)法结合聚焦离子束(FIB)切割法制备出大高宽比X射线波带片结构,即用原子层沉积法在光滑的钨丝表面交替沉积Al2O3/HfO2多层膜,其总层数为360,最外层膜宽度为10 nm。聚焦离子束的加速电压设定为30 kV,先利用束流为1 000 pA的离子束流将Al2O3/HfO2多层膜切割成设计厚度的薄片,再利用束流为350 pA的离子束流对切割的截面进行抛光,最后得到厚度为50μm、最外层膜宽度为10 nm的大高宽比X射线波带片结构。  相似文献   

11.
研究了聚焦离子束(FIB)沉积Pt纳米导线的电学失效行为及其机理.FIB沉积Pt纳米导线在集成电路修复和微型电极制备等领域有重要应用,其电学特性及失效行为研究对器件结构设计及性能测试具有重要意义.直流电学测试中电压接近9 V时,电流快速上升并发生断路.经扫描电子显微镜(SEM)和原位X射线能谱(EDS)分析发现,断路后Pt纳米导线中有球状结构析出,球状结构中Pt与C的原子数分数之比是原始薄膜中的4倍,周围物质变得疏松甚至发生局部断裂,且Pt的原子数分数降低,从而形成不导电结构.进一步对样品进行升温电学测试,结果表明,在120℃以上Pt纳米导线在内部电流与外部加热共同作用下发生Pt晶粒生长及团聚,使Pt空缺的间隙变大,从而造成Pt纳米导线的电学失效.  相似文献   

12.
《微纳电子技术》2020,(3):230-236
铌酸锂物理性能稳定,电光、声光及非线性光学效应优异,是集成光学器件中重要的光学材料。然而,目前铌酸锂材料的加工工艺无法满足复杂且小型化的集成光路发展需求。聚焦离子束(FIB)是一种无掩膜、高精度的加工技术,但同时会引入离子注入和材料表面非晶化等损伤。研究了FIB离子剂量对铌酸锂刻蚀深度及表面粗糙度的影响,在离子剂量大于0.25 nC·μm~(-2)条件下实现了亚纳米表面粗糙度的刻蚀。通过采用共聚焦喇曼光谱法表征FIB刻蚀前后铌酸锂喇曼光谱的变化,证明了在离子剂量为0.1~1.0 nC·μm~(-2)下FIB刻蚀对铌酸锂薄膜造成的整体损伤小(喇曼峰展宽的平均变化小于5%),对使用FIB进行精密、可控的铌酸锂结构加工具有重要参考意义。  相似文献   

13.
静电放电(ESD)和过电应力(EOS)是引起芯片现场失效的最主要原因,这两种相似的失效模式使得对它们的失效机理的判断十分困难,尤其是短EOS脉冲作用时间只有几毫秒,造成的损坏与ESD损坏很相似。因此,借助扫描电子显微镜(SEM)和聚焦离子束(FIB)等成像仪器以及芯片去层处理技术分析这两种失效机理的差别非常重要。通过实例分析这两种失效的机理及微观差别,从理论角度解释ESD和EOS的失效机理,分析这两种失效在发生背景、失效位置、损坏深度和失效路径方面的差异,同时对这两种失效进行模拟验证。这种通过失效微观形态进行研究的方法,可以实现失效机理的甄别,对于提高ESD防护等级和EOS防护能力有着重要的参考作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号