首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The temporal activation of siRNA provides a valuable strategy for the regulation of siRNA activity and conditional gene silencing. The bioorthogonal bond-cleavage reaction of benzonorbonadiene and tetrazine is a promising trigger in siRNA temporal activation. Here, we developed a new method for the bio-orthogonal chemical activation of siRNA based on the tetrazine-induced bond-cleavage reaction. Small-molecule activatable caged siRNAs were developed with the 5′-vitamin E-benzonobonadiene-modified antisense strand targeting the green fluorescent protein (GFP) gene and the mitotic kinesin-5 (Eg5) gene. The addition of tetrazine triggered the reaction with benzonobonadiene linker and induced the linker cleavage to release the active siRNA. Additionally, the conditional gene silencing of both exogenous GFP and endogenous Eg5 genes was successfully achieved with 5′-vitamin E-benzonobonadiene-caged siRNAs, which provides a new uncaging strategy with small molecules.  相似文献   

3.
Programmable molecular self‐assembly of siRNA molecules provides precisely controlled generation of dendrimeric siRNA nanostructures. The second‐generation dendrimers of siRNA can be effectively complexed with a low‐molecular‐weight, cationic polymer (poly(β‐amino ester), PBAE) to generate stable nanostructures about 160 nm in diameter via strong electrostatic interactions. Condensation and gene silencing efficiencies increase with the increased generation of siRNA dendrimers due to a high charge density and structural flexibility.  相似文献   

4.
Clinical translation of nucleic acids drugs has been stunted by limited delivery options. Herein, we report a synthetic polymer designed to mimic viral mechanisms of delivery called VIPER (virus‐inspired polymer for endosomal release). VIPER is composed of a polycation block for condensation of nucleic acids, and a pH‐sensitive block for acid‐triggered display of a lytic peptide to promote trafficking to the cell cytosol. VIPER shows superior efficiencies compared to commercial agents when delivering genes to multiple immortalized cell lines. Importantly, in murine models, VIPER facilitates effective gene transfer to solid tumors.  相似文献   

5.
6.
7.
8.
9.
10.
Nanoparticles show great potential for drug delivery. However, suitable nanostructures capable of loading a range of drugs together with the co‐delivery of siRNAs, which avoid the problem of cation‐associated cytotoxicity, are lacking. Herein, we report an small interfering RNA (siRNA)‐based vesicle (siRNAsome), which consists of a hydrophilic siRNA shell, a thermal‐ and intracellular‐reduction‐sensitive hydrophobic median layer, and an empty aqueous interior that meets this need. The siRNAsome can serve as a versatile nanostructure to load drug agents with divergent chemical properties, therapeutic proteins as well as co‐delivering immobilized siRNAs without transfection agents. Importantly, the inherent thermal/reduction‐responsiveness enables controlled drug loading and release. When siRNAsomes are loaded with the hydrophilic drug doxorubicin hydrochloride and anti‐P‐glycoprotein siRNA, synergistic therapeutic activity is achieved in multidrug resistant cancer cells and a tumor model.  相似文献   

11.
In this study, a novel polyhistidine-incorporated lipid nanoparticle (pHis/LNP) is developed for the delivery of therapeutic globotriaosylceramide (Gb3) synthase siRNAs using a microfluidic device with pHis as a biocompatible method of endosome escape. To inhibit the expression of Gb3 synthase, six siRNAs against Gb3 synthase are designed and an optimal siRNA sequence is selected. Selected Gb3 synthase siRNA is incorporated into pHis/LNP to prepare a spherical siRNA pHis/LNP with a size of 62.5 ± 1.9 nm and surface charge of −13.3 ± 4.2 mV. The pHis/LNP successfully protects siRNAs from degradation in 50% serum condition for 72 h. Prepared pHis/LNP exhibits superior stability for 20 days and excellent biocompatibility for A549 cells. After treatment with fluorescence-labeled LNPs, dotted fluorescent signals are co-localized with Lysotracker in cells with LNPs, whereas strong and diffused fluorescence intensity is observed in cells with pHis/LNPs probably due to successful endosomal escape. The extent of Gb3 synthase gene silencing by siRNA pHis/LNP is greatly improved (6.0-fold) compared to that by siRNA/LNP. Taken together, considering that the fabricated siRNA pHis/LNP exhibits excellent biocompatibility and superior gene silencing activity over conventional LNP, these particles can be utilized for the delivery of a wide range of therapeutic siRNAs.  相似文献   

12.
13.
With the advent of single‐molecule methods, chemoselective and site‐specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme‐based tags or autofluorescent proteins are short peptide‐based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine‐tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single‐molecule approaches.  相似文献   

14.
Precise control of in vivo transport of anticancer drugs in normal and cancerous tissues with engineered nanoparticles is key to the future success of cancer nanomedicines in clinics. This requires a fundamental understanding of how engineered nanoparticles impact the targeting‐clearance and permeation‐retention paradoxes in the anticancer‐drug delivery. Herein, we systematically investigated how renal‐clearable gold nanoparticles (AuNPs) affect the permeation, distribution, and retention of the anticancer drug doxorubicin in both cancerous and normal tissues. Renal‐clearable AuNPs retain the advantages of the free drug, including rapid tumor targeting and high tumor vascular permeability. The renal‐clearable AuNPs also accelerated body clearance of off‐target drug via renal elimination. These results clearly indicate that diverse in vivo transport behaviors of engineered nanoparticles can be used to reconcile long‐standing paradoxes in the anticancer drug delivery.  相似文献   

15.
16.
Therapeutic nucleic acids hold great promise for the treatment of disease but require vectors for safe and effective delivery. Synthetic nanoparticle vectors composed of poly(β‐amino esters) (PBAEs) and nucleic acids have previously demonstrated potential utility for local delivery applications. To expand this potential utility to include systemic delivery of mRNA, hybrid polymer–lipid nanoformulations for systemic delivery to the lungs were developed. Through coformulation of PBAEs with lipid–polyethylene glycol (PEG), mRNA formulations were developed with increased serum stability and increased in vitro potency. The formulations were capable of functional delivery of mRNA to the lungs after intravenous administration in mice. To our knowledge, this is the first report of the systemic administration of mRNA for delivery to the lungs using degradable polymer–lipid nanoparticles.  相似文献   

17.
18.
Activatable (turn‐on) probes that permit the rapid, sensitive, selective, and accurate identification of cancer‐associated biomarkers can help drive advances in cancer research. Herein, a NAD(P)H:quinone oxidoreductase‐1 (NQO1)‐specific chemiluminescent probe 1 is reported that allows the differentiation between cancer subtypes. Probe 1 incorporates an NQO1‐specific trimethyl‐locked quinone trigger moiety covalently tethered to a phenoxy‐dioxetane moiety through a para‐aminobenzyl alcohol linker. Bio‐reduction of the quinone to the corresponding hydroquinone results in a chemiluminescent signal. As inferred from a combination of in vitro cell culture analyses and in vivo mice studies, the probe is safe, cell permeable, and capable of producing a “turn‐on” luminescence response in an NQO1‐positive A549 lung cancer model. On this basis, probe 1 can be used to identify cancerous cells and tissues characterized by elevated NQO1 levels.  相似文献   

19.
With more and more engineered nanoparticles (NPs) being designed renal clearable for clinical translation, fundamental understanding of their transport in the different compartments of kidneys becomes increasingly important. Here, we report noninvasive X‐ray imaging of renal clearable gold NPs (AuNPs) in normal and nephropathic kidneys. By quantifying the transport kinetics of the AuNPs in cortex, medulla and pelvis of the normal and injured kidneys, we found that ureteral obstruction not just blocked the NP elimination through the ureter but also slowed down their transport from the medulla to pelvis and enhanced the cellular uptake. Moreover, the transport kinetics of the NPs and renal anatomic details can be precisely correlated with local pathological lesion. These findings not only advance our understandings of the nano‐bio interactions in kidneys but also offer a new pathway to noninvasively image kidney dysfunction and local injuries at the anatomical level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号