首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Electron momentum distributions for outer valence orbitals of CF2Cl2 have been obtained by (e,2e) electron momentum spectroscopy at an incident energy of 1200 eV + binding energy. The experimental electron momentum profiles are compared with Hartree-Fock and density functional theory (DFT) calculations using B3LYP hybrid functional with the 6-31G and 6-311+G* basis sets. Generally, the shapes of the experimental momentum profiles are well reproduced by DFT calculations using larger basis sets 6-311 + G*. An attempt has been made to clarify the ordering of the outer valence orbitals, which have been in controversy, by comparing experimental results with B3LYP/6-311 + G* calculations.  相似文献   

2.
《Chemical physics》1987,116(3):399-410
The ionization potentials of the valence shell orbitals (up to 40 eV) of triethylamine have been measured by means of the binary (e,2e) technique. Satellite structure, due to transitions to ionic excited states, has been observed in the outer valence shell for binding energies larger than 15 eV. The electron momentum distributions of the valence orbitals have been measured on ionization peaks corresponding to main and satellite transitions. Results are compared with SCF calculations. The electron momentum distribution of the most external orbital, formed mostly by the N 2p lone pair, is discussed in detail.  相似文献   

3.
4.
Momentum densities obtained from the Heitler-London (HL) wave functions for diatomic molecules and those from the corresponding valence-bond (VB) wave functions including ionic terms are compared. In each case they shown maxima in the direction perpendicular to the bond. However, the dependence of momentum densities on mutual orientations of the two electronic momenta is quite complex in the latter case. The improvement in the Compton profile on including the ionic terms is illustrated with the example of H2. The momentum denmsities obtained from the VB wave function constructed from orthogonalized atomic orbitals (OAO) have also been examined. The HL wave function with OAOS leads to the same momentum distribution as the repulsive state HL wave function constructed from overlapping AOS.  相似文献   

5.
Individual orbital contributions to the electron momentum densities of first-row homonuclear diatomic molecules are discussed. It is shown that the nodal surfaces in the orbital EMDs arise from a diffraction factor with both geometric and electronic components. The positions of the nodal surfaces convey information on the electronic structure. The results are illustrated with a Hartree-Fock-Slater calculation of the F2(X1Σg+) molecule.  相似文献   

6.
7.
The momentum distributions of the valence orbitals for water well as the binding energy spectra in the region 10–45 eV have been reinvestigated with a high momentum resolution (≈0.1 a0?1 fwhm) binary (e.2e) spectrometer. The binding energy spectra show considerable satellite structure in the region > 25 eV which is consistent with theoretical predictions of final state configuration interaction (many-body effects) involving the (2a1)?1 hole state. An investigation of the momentum distribution in the satellite region confirms this assignment. This is in accord with a variety of recent theoretical studies and also consistent with earlier experiments. Differences suggested in earlier comparisons between theory and low momentum resolution experiments for the momentum distributions of the 1b1 and 3a1 orbitals have been verified. Several possible theoretical studies are suggested to investigate further this discrepancy between experiment and theory. Bonding effects and thenature of the molecular orbitals of H2O in momentum space are also discussed.  相似文献   

8.
We present experimental Compton profiles of ZnSe along [1 0 0] and [1 1 0] directions using our 740 GBq 137Cs Compton spectrometer. We have also computed the momentum densities, energy bands, density of states (DOS) and band gaps using density functional theory (local density and generalized gradient approximations) and pseudopotential (PP) approach. The anisotropy in the momentum density is well reproduced by the density functional calculations. The energy bands and bond length are interpreted in terms of the anisotropies.  相似文献   

9.
The electron can provide much information about its surroundings. When a photon or an electron with sufficient energy hits a surface, the surface electrons can act as messengers, giving valuable information about the surface. This article describes the various interactions and spectroscopic methods connected with this.  相似文献   

10.
Transmission electron spectroscopy has been applied to determine the energies of resonances in HF. In addition to a sharp resonance at 10.05 eV, a resonance series exhibiting both vibrational and rotational structure is resolved in the energy range between 12 eV and 13 eV and the following molecular constants are obtained: B = 20.4 cm?1, re, = 0.93 Å, ωe 0.132 eV, ωexe = 0.006 eV and De = 0.73 eV. The resonance spectrum is analysed with reference to an electron energy loss spectrum and approximate potential energy curves are deduced. Serious discrepancies are found between the present results and the data reported by Spence and Noguchi.  相似文献   

11.
The binding energy spectrum of carbon disulphide (CS(2)) in the energy range of 9-23 eV has been measured by a high-resolution (e,2e) spectrometer employing asymmetric noncoplanar kinematics at an impact energy of 2500 eV plus the binding energy. Taking the advantage of the high energy resolution of 0.54 eV, four main peaks and five satellites in the outer-valence region are resolved. The assignments and pole strengths for these satellite states are achieved by comparing the experimental electron momentum profiles with the corresponding theoretical ones calculated using Hartree-Fock and density functional theory methods. The results are also compared in detail with the recent SAC-CI general-R calculations. General agreement is satisfactory, while the present experiment suggests cooperative contributions from (2)Π(u), (2)Σ(g)(+) states to satellite 2 and (2)Σ(g)(+), (2)Π(g) states to satellite 3. Besides, relatively low pole strength for X (2)Π(g) state is obtained which contradicts all the theoretical calculations [2ph-TDA, ADC(3), SAC-CI general-R, ADC(4)] so far.  相似文献   

12.
The binding energy spectra and momentum distributions of all valence orbitals of propene were studied by electron momentum spectroscopy (EMS) as well as Hartree-Fock and density functional theoretical calculations. The experiment was carried out at impact energies of 1200 eV and 600 eV on the state-of-the-art EMS spectrometer developed at Tsinghua University recently. The experimental momentum profiles of the valence orbitals were obtained and compared with the various theoretical calculations. Moreover, the experiment with a new analysis method presents a strong support for the correct ordering of the orbital 8a' and 1a', i.e., 9a' < 8a' < 1a' < 7a'.  相似文献   

13.
14.
The inelastic scattering of low energy electrons from liquid glycerol has been studied. For the first time, electron energy loss spectra of liquids are sufficiently well resolved to permit the identification of vibrations corresponding to individual bonds, namely the C–H and O–H stretching vibrations in glycerol. The angular distribution of the specular peak is very broad, indicating the absence of long-range order at the surface of the liquid. The measurement of the loss signals as a function of the primary electron energy suggests a hybrid mechanism of excitation. The excitation mechanism for the O–H vibration has a stronger impact character as compared to the C–H vibration. A negative ion resonance of glycerol is found at a primary energy of 8 eV. The signal intensities measured as a function of the specular angle of the electron beam appear to be influenced by the angular dependence of the dipole and impact scattering cross-section and a possible preferred orientation of the C–H and O–H groups at the surface of the liquid.  相似文献   

15.
The development of a third-generation electron momentum spectrometer with significantly improved energy and momentum resolutions at Tsinghua University (ΔE = 0.45–0.68 eV, Δθ = ±0.53° and Δ? = ±0.84°) has enabled a reinvestigation of the valence orbital electron momentum distributions of H2O with improved statistical accuracy. The measurements have been conducted at impact energies of 1200 eV and 2400 eV in order to check the validity of the plane wave impulse approximation. The obtained ionization spectra and electron momentum distributions have been compared with the results of computations carried out with Hartree Fock [HF] theory, density functional theory in conjunction with the standard B3LYP functional, one-particle Green’s function [1p-GF] theory along with the third-order algebraic diagrammatic construction scheme [ADC(3)], symmetry adapted cluster configuration interaction [SAC-CI] theory, and a variety of multi-reference [MR-SDCI, MR-RSPT2, MR-RSPT3] theories. The influence of the basis set on the computed momentum distributions has been investigated further, using a variety of basis sets ranging from 6-31G to the almost complete d-aug-cc-pV6Z basis set. A main issue in the present work pertains to a shake-up band of very weak intensity at 27.1 eV, of which the related momentum distribution was analyzed for the first time. The experimental evidences and the most thorough theoretical calculations demonstrate that this band borrows its ionization intensity from the 2a1 orbital.  相似文献   

16.
A method to measure electron energy loss spectra (EELS) of clusters with a high resolution (30 meV) has been developed and has been applied to some van der Waals clusters (Ar n , Kr n ). Structures have been found which relate to the excitation of atoms on the surface and inside the cluster. An influence of the cluster size on the spectra has been observed.  相似文献   

17.
Phenyl-cyclohexyl, phenyl-cyclopentyl, phenyl-cyclobutyl, phenyl-l-benzylcyclobutyl, and phenyl-l-benzylcyclopropylcarbone were photochemically generated in a matrix at low temperature and studied by ESR.  相似文献   

18.
《Chemical physics》1987,113(1):1-18
The complete valence shall binding energy spectrum (10–50 eV) of Cl2 has been determined using electron momentum (binary (e,2e)) spectroscopy. The inner valence region, corresponding to 4σu and 4σg ionization, has been measured for the first time and shows extensive splitting of the ionization strength due to electron correlation effects. These measurements are compared with the results of many-body calculations using Green function and CI methods employing unpolarised as well as polarised wavefunctions. Momentum distributions, measured in both the outer and inner valence regions, are compared with calculations using a range of unpolarised and polarised wavefunctions. Computed orbital density maps in momentum and position space for oriented Cl2 molecules are discussed in comparison with the measured and calculated spherically averaged momentum distributions.  相似文献   

19.
The valence-shell electron momentum distributions for 1-butene are measured by electron momentum spectroscopy (EMS) employing non-coplanar symmetric geometry. The experimental electron momentum distributions are compared with the density functional theory (DFT) calculations using different-sized basis sets. Although the two conformers of 1-butene in the gas phase, namely the skew and syn, have very close ionization potentials, the electron momentum distributions, especially in the low momentum region, can show prominent differences for some of the valence orbitals. By comparing the experimental electron momentum profiles with the theoretical ones, the skew conformer is found to be more stable than the syn and their relative abundances at room temperature are estimated to be (69 +/- 6)% and (31 +/- 6)%, respectively. It demonstrates that EMS has the latent potential to study the relative stability of conformers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号