首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
范霄  李艳艳  刘迎亚  曹昌盛  李海涛 《化学进展》2014,26(12):1987-1996
端粒酶是一种逆转录酶,能够维持端粒的长度和活性,从而防止染色体末端降解或融合,维持染色体稳定.大多数正常体细胞中端粒酶活性被抑制,端粒长度随着细胞持续分裂逐渐缩短;而在大多数癌细胞中端粒酶都表现出活性,端粒的长度和结构得以维持,癌细胞永生化.由此可见端粒酶是一种重要的癌症标志物,可作为癌症诊断依据和治疗靶点.然而,端粒酶结构复杂且数量少,难以从微量全酶复合物中分离出足量端粒酶用于分析,这为传统方法研究端粒酶带来极大困难.随着单分子荧光技术的发展,荧光共振能量转移、荧光双色同步响应等技术已被应用于端粒酶的研究,打破了传统方法检测端粒酶的各种局限.本文主要综述了单分子荧光技术的发展,端粒、端粒酶与癌症及其研究进展,并对单分子荧光技术在端粒酶研究中的应用及其发展趋势进行了总结和展望.  相似文献   

4.
5.
Electrochemical telomerase assay (ECTA) developed by our group was evaluated in an oral cancer screening using exfoliated oral cells and tissues obtained from patients of oral cancer, mucosa associated disease, or healthy volunteers. Telomerase activity from ECTA is correlated with hTERT mRNA expression level using a real‐time PCR and was increasing in the following order: healthy volunteer group<mucosa associated disease group<oral cancer group. Sensitivity and specificity of ECTA were 88 % and 72 %, respectively when used 17 % of the threshold value based on the receiver operating characteristic curve in ECTA data.  相似文献   

6.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients’ survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.  相似文献   

7.
Pathogen infections and cancer are two major human health problems. Herein, we report the synthesis of an organic salt photosensitizer (PS), called 4TPA-BQ, by a one-step reaction. 4TPA-BQ presents aggregation-induced emission features. Owing to the aggregation-induced reactive oxygen species generated and a sufficiently small ΔEST, 4TPA-BQ shows a satisfactorily high 1O2 generation efficiency of 97.8 %. In vitro and in vivo experiments confirmed that 4TPA-BQ exhibited potent photodynamic antibacterial performance against ampicillin-resistant Escherichia coli with good biocompatibility in a short time (15 minutes). When the incubation duration persisted long enough (12 hours), cancer cells were ablated efficiently, leaving normal cells essentially unaffected. This is the first reported time-dependent fluorescence-guided photodynamic therapy in one individual PS, which achieves ordered and multiple targeting simply by varying the external conditions. 4TPA-BQ reveals new design principles for the implementation of efficient PSs in clinical applications.  相似文献   

8.
9.
Tumor hypoxia greatly suppresses the therapeutic efficacy of photodynamic therapy (PDT), mainly because the generation of toxic reactive oxygen species (ROS) in PDT is highly oxygen-dependent. In contrast to ROS, the generation of oxygen-irrelevant free radicals is oxygen-independent. A new therapeutic strategy based on the light-induced generation of free radicals for cancer therapy is reported. Initiator-loaded gold nanocages (AuNCs) as the free-radical generator were synthesized. Under near-infrared light (NIR) irradiation, the plasmonic heating effect of AuNCs can induce the decomposition of the initiator to generate alkyl radicals (R.), which can elevate oxidative-stress (OS) and cause DNA damages in cancer cells, and finally lead to apoptotic cell death under different oxygen tensions. As a proof of concept, this research opens up a new field to use various free radicals for cancer therapy.  相似文献   

10.
Two-dimensional (2D) monoelemental materials (Xenes) show considerable potential in bioapplications owing to their unique 2D physicochemical features and the favored biosafety resulting from their monoelemental composition. However, the narrow band gaps of Xenes prevent their broad applications in biosensors, bioimaging and phototherapeutics. In this study, it is demonstrated that 2D germanene terminated with −H via surface chemical engineering, shows a much broadened direct band gap of 1.65 eV, which enables the material to be used as a novel inorganic photosensitizer for the photodynamic therapy of singlet oxygen. Through theoretical analysis and in vitro studies, H-germanene nanosheets demonstrate a substantially enlarged band gap and favorable biodegradability, demonstrating a substantial cancer treatment capacity. This study demonstrates the feasibility of constructing novel therapeutic photodynamic agents by surface covalent engineering for catalytic tumor therapy.  相似文献   

11.
惠扬  马静  陶敏莉  周雪琴  刘东志 《化学通报》2007,70(11):812-822
近年来卟啉化学研究的一个新热点是,依据卟啉类化合物在肿瘤细胞优先集聚的特点,将其作为携带剂介导现有抗癌药物,实现靶向给药,同时利用卟啉的光敏性,实现分子内加和增效,合成具有化学杀伤和光动力杀伤双重活性的卟啉-抗癌药物体系。本文主要就双重作用机制卟啉靶向给药体系的研究进展进行综述。  相似文献   

12.
Cancers have always been the most difficult to fight, the treatment of cancer is still not considered. Thus, exploring new anticancer drugs is still imminent. Traditional Chinese medicine has played an important role in the treatment of cancer. Polyphenol oxidase (PPO) extracted from Edible mushroom has many related reports on its characteristics, but its role in cancer treatment is still unclear. This study aims to investigate the effects of PPO extracted from Edible mushroom on the proliferation, migration, invasion, and apoptosis of cancer cells in vitro and explore the therapeutic effects of PPO on tumors in vivo. A cell counting kit-8 (CCK8) assay was used to detect the effect of PPO on the proliferation of cancer cells. The effect of PPO on cancer cell migration ability was detected by scratch test. The effect of PPO on the invasion ability of cancer cells was detected by a transwell assay. The effect of PPO on the apoptosis of cancer cells was detected by flow cytometry. Female BALB/c mice (18–25 g, 6–8 weeks) were used for in vivo experiments. The experiments were divided into control group, model group, low-dose group (25 mg/kg), and high-dose group (50 mg/kg). In vitro, PPO extracted from Edible mushroom significantly inhibited the proliferation, migration, and invasion capability of breast cancer cell 4T1, lung cancer cell A549, and prostate cancer cell C4-2, and significantly promoted the apoptosis of 4T1, A549, and C4-2. In vivo experiments showed PPO inhibitory effect on tumor growth. Collectively, the edible fungus extract PPO could play an effective role in treating various cancers, and it may potentially be a promising agent for treating cancers.  相似文献   

13.
The efficacy of photodynamic therapy (PDT) using aminolevulinic acid (ALA), which is preferentially taken up by cancerous cells and converted to protoporphyrin IX (PpIX), can be substantially improved by pretreating the tumor cells with vitamin D (Vit D). Vit D is one of several “differentiation-promoting agents” that can promote the preferential accumulation of PpIX within the mitochondria of neoplastic cells, making them better targets for PDT. This article provides a historical overview of how the concept of using combination agents (“neoadjuvants”) for PDT evolved, from initial discoveries about neoadjuvant effects of methotrexate and fluorouracil to later studies to determine how vitamin D and other agents actually work to augment PDT efficacy. While this review focuses mainly on skin cancer, it includes a discussion about how these concepts may be applied more broadly toward improving PDT outcomes in other types of cancer.  相似文献   

14.
The clinical application of photodynamic therapy (PDT) for gastrointestinal (GI) neoplastic lesions has been developed with appreciation for the great efforts and kind support of Dr. Tom Dougherty and his followers’ contributions. There are several published studies on clinical PDT in the field of GI oncology. Esophageal cancer was one of the first clinical indications for PDT that was approved as an endoscopic procedure in both the United States and Japan. PDT was initially used as a palliative local treatment for patients with obstructive esophageal cancer. PDT is also indicated for eradicative therapy for dysplastic Barret’s esophagus, which is the precursor state of esophageal adenocarcinoma, with the support of level one evidence. In Japan, PDT was approved as a curative treatment for superficial esophageal carcinoma lesions, which are difficult to treat with endoscopic resection. Further, PDT using second-generation photosensitizers is approved for early local failure after radiotherapy, for which treatment with other modalities is difficult. PDT has also been assessed in other GI cancers, including gastric cancer, biliary cancer and pancreatic cancer. In this review, we overview the history and state of PDT for GI cancer.  相似文献   

15.
Telomerase as a possible target for anticancer therapy   总被引:6,自引:0,他引:6  
Telomeres, the termini of chromosomes, provide essential stability to linear eukaryotic chromosomes. The enzyme telomerase is one mechanism that maintains telomeres, and is activated in 85% of human cancer cells. New studies on peptide nucleic acids (PNAs) that inhibit telomerase have demonstrated that unexpected regions of the enzyme can serve as targets for inhibitors. The novel delivery method used expands the utility of PNAs.  相似文献   

16.
In spite of great development in nanoparticle-based drug delivery systems(DDSs)for improved therapeutic efficacy,it remains challenging for effective delivery of chemotherapeutic drugs to targeted tumor cells.In this work,we report a triangle DNA origami as targeted DDS for cancer therapy.DNA origami shows excellent biocompatibility and stability in cell culture medium for 24 h.In addition,the DNA origami structures conjugated with multivalent aptamers enable for efficient delivery of anticancer drug doxorubicin(Dox)into targeted cancer cell due to their targeting function,reducing side effects associated with nonspecific distribution.Moreover,we also demonstrated that the multivalent aptamer-modified DNA origami loading Dox exhibits prominent therapeutic efficacy in vitro.Accordingly,this work provides a good paradigm for the development of DNA origami nanostructure-based targeted DDS for cancer therapy.  相似文献   

17.
Tuning autophagy in a controlled manner could facilitate cancer therapy but it remains challenging. Pyridinium-substituted tetraphenylethylene salts (PTPE 1 — 3 ), able to target mitochondria and disrupt autophagy after forming complexes with albumin, are reported. Mitochondrion affinity and autophagy-inducing activity are improved by prolonging the length of alkyl chains in PTPE 1 – 3 . PTPE 1 – 3 demonstrate proautophagic activity and a mitophagy blockage effect. Failure of autophagosome–lysosome fusion in downstream autophagy flux results in cancer cell death. Moreover, fast formation of complexes of PTPE 1 – 3 with albumin in blood can facilitate biomimetic delivery and deep tumor penetration. Efficient tumor accumulation and effective tumor suppression are successfully demonstrated with in vitro and in vivo studies. PTPE 1 – 3 salts exhibit dual functionality: they target and image mitochondria because of aggregation-induced emission effects and they are promising for cancer therapy.  相似文献   

18.
Cancer is a group of disorders characterized by uncontrolled cell growth that affects around 11 million people each year globally. Nanocarrier-based systems are extensively used in cancer imaging, diagnostics as well as therapeutics; owing to their promising features and potential to augment therapeutic efficacy. The focal point of research remains to develop new-fangled smart nanocarriers that can selectively respond to cancer-specific conditions and deliver medications to target cells efficiently. Nanocarriers deliver loaded therapeutic cargos to the tumour site either in a passive or active mode, with the least drug elimination from the drug delivery systems. This review chiefly focuses on current advances allied to smart nanocarriers such as dendrimers, liposomes, mesoporous silica nanoparticles, quantum dots, micelles, superparamagnetic iron-oxide nanoparticles, gold nanoparticles and carbon nanotubes, to list a few. Exhaustive discussion on crucial topics like drug targeting, surface decorated smart-nanocarriers and stimuli-responsive cancer nanotherapeutics responding to temperature, enzyme, pH and redox stimuli have been covered.  相似文献   

19.
Numerous nanocarriers with excellent biocompatibilities have been used to improve cancer therapy. However, nonspecific protein adsorption of nanocarriers may block the modified nanoparticles in tumor cells, which would lead to inefficient cellular internalization. To address this issue, pH-responsive polyurethane prodrug micelles with a zwitterionic segment were designed and prepared. The micelle consisted of a zwitterionic segment as the hydrophilic shell and the drug Adriamycin (DOX) as the hydrophobic inner core. As a pH-responsive antitumor drug delivery system, the prodrug micelles showed high stability in a physiological environment and continuously released the drug under acidic conditions. In addition, the pure polyurethane carrier was demonstrated to be virtually non-cytotoxic by cytotoxicity studies, while the prodrug micelles were more efficient in killing tumor cells compared to PEG-PLGA@DOX. Furthermore, the DOX cellular uptake efficiency of prodrug micelles was proved to be obviously higher than the control group by both flow cytometry and fluorescence microscopy. This is mainly due to the modification of a zwitterionic segment with PU. The simple design of zwitterionic prodrug micelles provides a new strategy for designing novel antitumor drug delivery systems with enhanced cellular uptake rates.  相似文献   

20.
Drug delivery systems (DDSs) are designed to deliver therapeutic agents to specific target sites while minimizing systemic toxicity. Recent developments in drug-loaded DDSs have demonstrated promising characteristics and paved new pathways for cancer treatment. Light, a prevalent external stimulus, is widely utilized to trigger drug release. However, conventional light sources primarily concentrate on the ultraviolet (UV) and visible light regions, which suffer from limited biological tissue penetration. This limitation hinders applications for deep-tissue tumor drug release. Given their deep tissue penetration and well-established application technology, X-rays have recently received attention for the pursuit of controlled drug release. With precise spatiotemporal and dosage controllability, X-rays stand as an ideal stimulus for achieving controlled drug release in deep-tissue cancer therapy. This article explores the recent advancements in using X-rays for stimulus-triggered drug release in DDSs and delves into their action mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号