首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The gauge technique in unbroken (exact) relativistic quantum electrodynamics is applied to the nonrelativistic BCS theory exhibiting spontaneously brokenU(1) gauge invariance. In addition to the BCS-type solution, we find an interestingnew solution forweak coupling exhibiting ahigh T c. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

2.
The spectral concentration of arbitrary order for the Stark effect is proved to exist for a large class of Hamiltonians appearing in nonrelativistic and relativistic quantum mechanics. The results are consequences of an abstract result about the spectral concentration for self-adjoint operators. A general form of the adiabatic theorem of quantum mechanics, generalizing an earlier result of the author as well as some results by Lenard, is also proved.  相似文献   

3.
The general aim of this paper is to extend the Modal-Hamiltonian interpretation of quantum mechanics to the case of relativistic quantum mechanics with gauge U(1) fields. In this case we propose that the actual-valued observables are the Casimir operators of the Poincaré group and of the group U(1) of the internal symmetry of the theory. Moreover, we also show that the magnitudes that acquire actual values in the relativistic and in the non-relativistic cases are correctly related through the adequate limit.  相似文献   

4.
We discuss a number of questions related to the role of the observer in classical and quantum theories of fields, in particular electrodynamics. We find the gauge-independent parts of the electromagnetic potential, which are classical observables, both in a non-covariant manner and in a Lorentz covariant, observer-dependent way. We present an analysis of the probabilistic interpretation of relativistic quantum mechanics, similar to that of the nonrelativistic theory, and discuss the gauge invariance of the corresponding probability amplitudes.  相似文献   

5.
J. Seke   《Physica A》1996,230(3-4)
It is demonstrated, for the first time to our knowledge, that the Lamb-shift calculation for all states of hydrogenic atoms can be carried out to order α5 by applying the methods of nonrelativistic quantum electrodynamics and without using the Dirac equation and the second quantization for the electron. The extremely small deviations from the standard relativistic results were calculated for different S- and non-S-states as well.  相似文献   

6.
A quantum mechanical equation HΨ=EΨHΨ=EΨ is composed of three components, viz., Hamiltonian HH, wave function ΨΨ, and property E(λ)E(λ), each of which is confronted with fundamental issues in the relativistic regime, e.g., (1) What is the most appropriate relativistic many-body Hamiltonian? How to solve the resulting equation? (2) How does the relativistic wave function behave at the coalescence of two electrons? How to do relativistic explicit correlation? (3) How to formulate relativistic properties properly?, to name just a few. It is shown here that the charge-conjugated contraction of Fermion operators, dictated by the charge conjugation symmetry, allows for a bottom-up construction of a relativistic Hamiltonian that is in line with the principles of quantum electrodynamics (QED). Various approximate but accurate forms of the Hamiltonian can be obtained based entirely on physical arguments. In particular, the exact two-component Hamiltonians can be formulated in a general way to cast electric and magnetic fields, as well as electron self-energy and vacuum polarization, into a unified framework. While such algebraic two-component Hamiltonians are incompatible with explicit correlation, four-component relativistic explicitly correlated approaches can indeed be made fully parallel to the nonrelativistic counterparts by virtue of the ‘extended no-pair projection’ and the coalescence conditions. These findings open up new avenues for future developments of relativistic molecular quantum mechanics. In particular, ‘molecular QED’ will soon become an active and exciting field.  相似文献   

7.
The traditional standard theory of quantum mechanics is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858–873, 2015) we presented a proof of the spin–statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics”. In the present paper, by the same theory the proof of the spin–statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin–statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858–873, 2015). The present proof of the spin–statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858–873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.  相似文献   

8.
9.
It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the scales of length, time, and energy. Indeed, there are analogies between the electrostatic forces for groups of particles of discrete charge and the van der Waals forces in equilibrium thermal radiation. The differing Lorentz- or Galilean-transformation properties of the zero-point radiation spectrum and the Rayleigh-Jeans spectrum are noted in connection with their scaling properties. Also, the thermal effects of acceleration within classical electromagnetism are related to the existence of thermal equilibrium within a gravitational field. The unique scaling and phase-space properties of a discrete charge in the Coulomb potential suggest the possibility of an equilibrium between the zero-point radiation spectrum and matter which is universal (independent of the particle mass), and an equilibrium between a universal thermal radiation spectrum and matter where the matter phase space depends only upon the ratio mc 2/k B T. The observations and qualitative suggestions made here run counter to the ideas of currently accepted quantum physics.  相似文献   

10.
11.
It is demonstrated that a nonrelativistic quantum scale anomaly manifests itself in the appearance of composite operators with complex scaling dimensions. In particular, we study nonrelativistic quantum mechanics with an inverse square potential and consider a composite s-wave operator O=ψψ. We analytically compute the scaling dimension of this operator and determine the propagator 〈0|TOO|0〉. The operator O represents an infinite tower of bound states with a geometric energy spectrum. Operators with higher angular momenta are briefly discussed.  相似文献   

12.
In most introductory courses on quantum mechanics one is taught that the Hamiltonian operator must be Hermitian in order that the energy levels be real and that the theory be unitary (probability conserving). To express the Hermiticity of a Hamiltonian, one writes H?=?H ?, where the symbol ? denotes the usual Dirac Hermitian conjugation; that is, transpose and complex conjugate. In the past few years it has been recognized that the requirement of Hermiticity, which is often stated as an axiom of quantum mechanics, may be replaced by the less mathematical and more physical requirement of space?–?time reflection symmetry (𝒫𝒯 symmetry) without losing any of the essential physical features of quantum mechanics. Theories defined by non-Hermitian 𝒫𝒯-symmetric Hamiltonians exhibit strange and unexpected properties at the classical as well as at the quantum level. This paper explains how the requirement of Hermiticity can be evaded and discusses the properties of some non-Hermitian 𝒫𝒯-symmetric quantum theories.  相似文献   

13.
14.
These notes review a consistent and exact theory of quantum resonances and decay. Such a theory does not exist in the framework of traditional quantum mechanics and Dirac's formulation. But most of its ingredients have been familiar entities, like the Gamow vectors, the Lippmann-Schwinger (in- and out-plane wave) kets, the Breit-Wigner (Lorentzian) resonance amplitude, the analytically continued S-matrix, and its resonance poles. However, there are inconsistencies and problems with these ingredients: exponential catastrophe, deviations from the exponential law, causality, and recently the ambiguity of the mass and width definition for relativistic resonances. To overcome these problems the above entities will be appropriately defined (as mathematical idealizations). For this purpose we change just one axiom (Hilbert space and/or asymptotic completeness) to a new axiom which distinguishes between (in-)states and (out)observables using Hardy spaces. Then we obtain a consistent quantum theory of scattering and decay which has the Weisskopf-Wigner methods of standard textbooks as an approximation. But it also leads to time-asymmetric semigroup evolution in place of the usual, reversible, unitary group evolution. This, however, can be interpreted as causality for the Born probabilities. Thus we obtain a theoretical framework for the resonance and decay phenomena which is a natural extension of traditional quantum mechanics and possesses the same arrow-of-time as classical electrodynamics. When extended to the relativistic domain, it provides an unambiguous definition for the mass and width of the Z-boson and other relativistic resonances.  相似文献   

15.
The review presents systematically the results of studies which develop an idea of quantum properties of space-time in the microworld or near exotic objects (black holes, magnetic monopoles and others). On the basis of this idea motion equations of nonrelativistic and relativistic particles are studied. It is shown that introducing concept of quantum space-time at small distances (or near superdense matter) leads to an additional force giving rise to appearance of spiral-like behaviour of a particle along its classical trajectory. Given method is generalized to nonrelativistic quantum mechanics and to motion of a particle in gravitational force. In the latter case, there appears to be an antigravitational effect in the motion of a particle leading to different value of free-fall time (at least for gravitational force of exotic objects) for particles with different masses. Gravitational consequences of quantum space-time and tensor structures of physical quantities are inveatigated in detail. From experimental data on testing relativity and anisotropy of inertia estimation L ≦ 10−22 cm on the value of the fundamental length is obtained.  相似文献   

16.
A generally covariant wave equation is derived geometrically for grand unified field theory. The equation states most generally that the covariant d'Alembertian acting on the vielbein vanishes for the four fields which are thought to exist in nature: gravitation, electromagnetism, weak field and strong field. The various known field equations are derived from the wave equation when the vielbein is the eigenfunction. When the wave equation is applied to gravitation the wave equation is the eigenequation of wave mechanics corresponding to Einstein's field equation in classical mechanics, the vielbein eigenfunction playing the role of the quantized gravitational field. The three Newton laws, Newton's law of universal gravitation, and the Poisson equation are recovered in the classical and nonrelativistic, weak-field limits of the quantized gravitational field. The single particle wave-equation and Klein-Gordon equations are recovered in the relativistic, weak-field limit of the wave equation when scalar components are considered of the vielbein eigenfunction of the quantized gravitational field. The Schrödinger equation is recovered in the non-relativistec, weak-field limit of the Klein-Gordon equation). The Dirac equation is recovered in this weak-field limit of the quantized gravitational field (the nonrelativistic limit of the relativistic, quantezed gravitational field when the vielbein plays the role of the spinor. The wave and field equations of O(3) electrodynamics are recovered when the vielbein becomes the relativistic dreibein (triad) eigenfunction whose three orthonormal space indices become identified with the three complex circular indices (1), (2), (3), and whose four spacetime indices are the indices of non-Euclidean spacetime (the base manifold). This dreibein is the potential dreibein of the O(3) electromagnetic field (an electromagnetic potential four-vector for each index (1), (2), (3)). The wave equation of the parity violating weak field is recovered when the orthonormal space indices of the relativistic dreibein eigenfunction are identified with the indices of the three massive weak field bosons. The wave equation of the strong field is recovered when the orthonormal space indices of the relativistic vielbein eigenfunction become the eight indices defined by the group generators of the SU (3) group.  相似文献   

17.
Classical and quantum Gibbs ensembles are constructed for equilibrium statistical mechanics in the framework of an extension to many-body theory of a relativistic mechanics proposed by Stueckelberg. In addition to the usual chemical potential in the grand canonical ensemble, there is a new potential corresponding to the mass degree of freedom of relativistic systems. It is shown that in the nonrelativistic limit the relativistic ensembles we have obtained reduce to the usual ones, and mass fluctuations for the free-particle gas approach the fluctuations in N. The ultrarelativistic limit of the canonical ensemble for the free-particle gas differs from the corresponding limit of the ensemble proposed by Jüttner and Pauli. Due to the mass degree of freedom, the quantum counting of states is different from that of the nonrelativistic theory. If the mass distribution is sufficiently sharp, the thermodynamical effects of this multiplicity will not be large. There may, however, be detectable effects such as a shift in the Fermi level and the critical temperature for Bose-Einstein condensation, and some change in specific heats.  相似文献   

18.
We propose some formulations of the notion of “operational independence” of two subsystems S 1,S 2 of a larger quantum system S and clarify their relation to other independence concepts in the literature. In addition, we indicate why the operational independence of quantum subsystems holds quite generally, both in nonrelativistic and relativistic quantum theory.  相似文献   

19.
In a previous paper a stochastic foundation was proposed for microphysics: the nonrelativistic and relativistic domains were shown to be connected with two different approximations of diffusion theory; the relativistic features (Lorentz contraction for the coordinate standard deviation, covariant diffusion equation) were not derived from the relativistic formalism introduced at the start, but emerged from diffusion theory itself. In the present paper these results are given a new presentation, which aims at elucidating not the foundations of quantum mechanics, but those of relativity. This leads to a discussion of points still controversial in the interpretation of relativity. In particular two problems appear in a new light: the character of time and length alterations, and the privileged role of the velocityc. Besides, the question of a possible limitation of relativity (and more generally of the laws of mechanics) in the domain of particle substructure is raised and supported by exemples drawn from the hydrodynamical model of a spinned particle. Suggestions are presented for the possibility of a deeper conceptual unification of special and general relativity.  相似文献   

20.
Examples are given of non-Hermitian Hamiltonian operators which have a real spectrum. Some of the investigated operators are expressed in terms of the generators of the Weyl–Heisenberg algebra. It is argued that the existence of an involutive operator [^(J)]\hat J which renders the Hamiltonian [^(J)]\hat J-Hermitian leads to the unambiguous definition of an associated positive definite norm allowing for the standard probabilistic interpretation of quantum mechanics. Non-Hermitian extensions of the Poeschl–Teller Hamiltonian are also considered. Hermitian counterparts obtained by similarity transformations are constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号