首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.  相似文献   

2.
The focus of this paper is the derivation of a nonstandard model for microbial enhanced oil recovery (MEOR) that includes the interfacial area (IFA) between oil and water. We consider the continuity equations for water and oil, a balance equation for the oil–water interfacial area, and advective–dispersive transport equations for bacteria, nutrients, and biosurfactants. Surfactants lower the interfacial tension (IFT), which improves oil recovery. Therefore, the parametrizations of the IFT reduction and residual oil saturation are included as a function of the surfactant concentration in the model. We consider for the first time in context of MEOR, the role of IFA in enhanced oil recovery. The motivation to include the IFA is to model the hysteresis in the capillary pressure–saturation relationship in a physically based manner, to include the effects of observed bacteria migration toward the oil–water interface and the production of biosurfactants at the oil–water interface. A comprehensive 2D implementation based on two-point flux approximation and backward Euler is proposed. An efficient and robust linearization scheme is used to solve the nonlinear systems at each time step. Illustrative numerical simulations are presented. The differences in the oil recovery profiles obtained with and without IFA are discussed. The presented model can also be used to design new experiments toward a better understanding and eventually optimization of MEOR.  相似文献   

3.
4.
Microbial enhanced oil recovery (MEOR) represents a possible cost-effective tertiary oil recovery method. Although the idea of MEOR has been around for more than 75 years, even now little is known of the mechanisms involved. In this study, Draugen and Ekofisk enrichment cultures, along with Pseudomonas spp. were utilized to study the selected MEOR mechanisms. Substrates which could potentially stimulate the microorganisms were examined, and l-fructose, d-galacturonic acid, turnose, pyruvic acid and pyruvic acid methyl ester were found to be the best utilized by the Ekofisk fermentative enrichment culture. Modelling results indicated that a mechanism likely to be important for enhanced oil recovery is biofilm formation, as it required a lower in situ cell concentration compared with some of the other MEOR mechanisms. The bacterial cells themselves were found to play an important role in the formation of emulsions. Bulk coreflood and flow cell experiments were performed to examine MEOR mechanisms, and microbial growth was found to lead to possible alterations in wettability. This was observed as a change in wettability from oil wet (contact angle 154°) to water wet (0°) due to the formation of biofilms on the polycarbonate coupons.  相似文献   

5.
In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion is introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration coefficients, and substrate injection concentrations. For both growth scenarios, there is a zone of optimal activity at which the CRP is minimal. Dependence of the CRP on substrate concentration for uniform growth scenario has also an optimal zone. Therefore, growth rate and the substrate concentration should be above a certain threshold value and still not be too high to obtain the minimum CRP. On the other hand, no such zone was found if the bacteria could grow only in the attached phase. Dependencies on both the injected concentration and filtration coefficient are monotonous in this case.  相似文献   

6.
7.
Quantitative in situ monitoring of oil recovery from sedimentary rock is demonstrated for the first time using advanced two-dimensional (2D) nuclear magnetic resonance (NMR) correlation measurements on a low field spectrometer. The laboratory-scale NMR system was chosen to provide a common physics of measurement with NMR well-logging tools. The NMR protocols are used to monitor recovery of a heavy Middle East crude oil from high permeability sandstone plugs using a brine (water) flood followed by chemical enhanced oil recovery agents: polymer and alkaline?Csurfactant?Cpolymer solutions. 2D correlations between relaxation time (T 1, T 2) and apparent self-diffusion coefficient D app are used to obtain simultaneously a volumetric determination of the oil and aqueous fluid-phase saturations present in the porous material. The T 1 ? T 2 and D app ? T 2 correlations are bulk measurements of the entire rock core-plug; excellent agreement is shown between the measures of remaining oil (from NMR) and recovered oil (from gravimetric assay of the effluent). Furthermore, we introduce the capability to measure spatially resolved T 2 distributions on a low field spectrometer using a rapid frequency-encoded y ? T 2 map. A non-uniform distribution of remaining oil is observed due to viscous instabilities in the flowing liquids; the final oil saturation ranges from ${S_{\rm o}^{\rm{(final)}} \approx 0}$ to 20?% along the direction of flow. These results highlight the quantitative nature of the NMR data obtainable in low field NMR core analysis and also the importance of spatially resolved measurements when studying short core-plugs.  相似文献   

8.
A fundamental study of microscopic mechanisms and pore-level phenomena in the Microbial Improved Oil Recovery method has been investigated. Understanding active mechanisms to increase oil recovery is the key to predict and plan MIOR projects successfully. This article presents the results of visualization experiments carried out in a transparent pore network model. In order to study the pore scale behavior of bacteria, dodecane and an alkane oxidizing bacterium, Rhodococcus sp. 094, suspended in brine, are examined for evaluating the performance of bacterial flooding in the glass micromodel. The observations show the effects of bacteria on remaining oil saturation, allowing us to get better insight on the mechanisms. Bacterial mass composed of bacteria and bioproducts growth in the fluid interfaces and pore walls have been recorded and are presented. No gas is observed throughout any of the experiments. The biomass blocks some pores and pore-throats, and thereby changing the flow pattern. As a consequent, the flow pattern change together with the previously proposed mechanisms, including the interfacial tension reduction and wettability changes are recognized as active mechanisms in the MIOR process.  相似文献   

9.
The rheometry and flow behaviour of aqueous solutions of polyacrylamide and xanthan gum are discussed, with the expectation that the results will be of use in Enhanced Oil Recovery (EOR). The rheometrical study gives particular prominence to the dramatically high values of extensional viscosity which are possible in aqueous solutions of flexible polymers such as polyacrylamide. The effect of such factors as polymer concentration, salt concentration and mechanical degradation on rheometrical properties is outlined. Reference is also made to the qualitatively-different rheometrical behaviour experienced by comparable solutions of xanthan gum.Further evidence is advanced that some dilute polymer solutions of potential use in EOR experience abnormally high resistance in flows which are dominated by extension. Since flow through a porous medium involves a substantial extensional component, it is argued that there is justification for studying the effect of this high extensional-viscosity behaviour in a number of idealized geometries of relevance to EOR conditions. The resulting experiments indicate that, at low flow rates,shear viscosity is the dominant influence, but that, after a critical set of conditions,extensional-viscosity considerations can become all important and the observed pressure losses are against any expectation based on conventional fluid mechanics.Flow visualization studies support the pressure-drop measurements in emphasising the strong influence of high extensional viscosities in flows through tortuous geometries.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

10.
Transport in Porous Media - We demonstrate how to use numerical simulation models directly on micro-CT images to understand the impact of several enhanced oil recovery (EOR) methods on microscopic...  相似文献   

11.
In this paper, we consider the problem of control of hydrodynamic instability arising in the displacement processes during enhanced oil recovery by SP-flooding (Surfactant?CPolymer). In particular, we consider a flooding process involving displacement of a viscous fluid in porous media by a less viscous fluid containing polymer and surfactant over a finite length which in turn is displaced by a even less viscous fluid such as water. The maximum stabilization capacities of several monotonic and non-monotonic viscous profiles created by non-uniform polymer concentration are studied in the presence of interfacial tensions created by surfactants. The study has been carried out numerically to determine and characterize the most optimal viscous profiles of each family. Similarities in optimal monotonic viscous profiles of this constant-time injection policy and other injection policies by previous workers are noted. The presence of interfacial instability (due to viscosity jump) and layer instability (due to viscosity gradient) in appropriate proportions has been numerically demonstrated to be a necessary condition for monotonic as well as optimal non-monotonic profiles except in the limiting case of infinite time injection in which case maximum stabilization appears to result from pure layer instability. It has also been demonstrated numerically that the optimal non-monotonic viscous profiles can have better stabilization potential than the optimal monotonic profiles. Many other new features of this injection policy which have not been recognized before have been discussed.  相似文献   

12.
Evaluation of relative permeability coefficients is one of the key steps in reliable simulation of two-phase flow in porous media. An extensive body of work exists on evaluation of these coefficients for two-phase flow under pressure gradient. Oil transport under an applied electrical gradient in porous media is also governed by the principles of two-phase flow, but is less understood. In this paper, relative permeability coefficients under applied electric field are evaluated for a specific case of two- phase fluid flow in water-wet porous media, where the second fluid phase is oil. It is postulated that the viscous drag on the oil phase, exerted by the electro-osmotic flow of the water phase, is responsible for the transport of oil in the absence of a pressure gradient. Reliable prediction of the flow patterns necessitates accurate representation and determination of the relative permeability coefficients under the electrical gradient. The contribution of each phase to the flow is represented mathematically, and the relative permeability coefficients are evaluated through electro-osmotic flow measurements conducted on oil bearing rock cores.  相似文献   

13.
Oil can be recovered from fractured, initially oil-wet carbonate reservoirs by wettability alteration with dilute surfactant and electrolyte solutions. The aim of this work is to study the effect of salinity, surfactant concentration, electrolyte concentration, and temperature on the wettability alteration and identify underlying mechanisms. Contact angles, phase behavior, and interfacial tensions were measured with two oils (a model oil and a field oil) at temperatures up to 90°C. There exists an optimal surfactant concentration for varying salinity and an optimal salinity for varying surfactant concentration at which the wettability alteration on an oil-aged calcite plate is the maximum for anionic surfactants studied. As the salinity increases, the extent of maximum wettability alteration decreases; also the surfactant concentration needed for the maximum wettability alteration decreases. IFT and contact angle were found to have the same optimal salinity for a given concentration of anionic surfactants studied. As the ethoxylation increases in anionic surfactants, the extent of wettability alteration on calcite plates increases. Wettability of oil-aged calcite plates can be altered by divalent ions at a high temperature (90°C and above). Sulfate ions alter wettability to a greater extent in the presence of magnesium and calcium ions than in the absence. A high concentration of calcium ions can alter wettability alone. Magnesium ions alone do not change calcite plate wettability. Wettability alteration increases the oil recovery rate from initially oil-wet Texas Cordova Cream limestone cores by imbibition.  相似文献   

14.
根据泥质夹层的低渗特性及空间分布,本文提出了一种含泥质夹层油藏网格渗透率的粗化计算方法,并在此基础上,将自适应网格算法应用于含泥质夹层油藏的数值模拟,提升其计算效率.在计算过程中,网格的动态划分仅依据流体物理量的变化,泥质夹层区域不全部采用细网格,仅针对流动锋面处的泥质夹层采用细网格,其余泥质夹层处采用不同程度的粗网格.相较于传统算法,网格数大幅下降.数值算例表明,自适应网格算法的计算结果精度与全精细网格一致,能够准确模拟出泥质夹层对于流体的阻碍作用,同时计算效率得到大幅提升,约为全精细网格算法的3~7 倍.  相似文献   

15.
对含轻质组分稠油油藏蒸汽注采过程数值模拟的自适应网格方法进行研究.网格的细化和粗化是自适应网格方法的基本步骤,为克服组分摩尔分数在网格细化过程中出现小于0或大于1的非物理振荡,提出了一个有效的守恒修正分片线性插值算法;指出可挥发的轻质组分分子量较大时,除了温度和各相饱和度外,组分摩尔分数需作为网格细化的判据.算例显示自适应网格方法有着很好的计算精度和计算速度.  相似文献   

16.
We study counter-current imbibition, where a strongly wetting phase (water) displaces non-wetting phase spontaneously under the influence of capillary forces such that the non-wetting phase moves in the opposite direction to the water. We use an approximate analytical approach to derive an expression for saturation profile when the viscosity of the non-wetting phase is non-negligible. This makes the approach applicable to water flooding in hydrocarbon reservoirs, or the displacement of non-aqueous phase liquid (NAPL) by water. We find the recovery of non-wetting phase as a function of time for one-dimensional flow. We compare our predictions with experimental results in the literature. Our formulation reproduces experimental data accurately and is superior to previously proposed empirical models.  相似文献   

17.
The flow of oil and water in naturally fractured reservoirs (NFR) can be highly complex and a simplified model is presented to illustrate some main features of this flow system. NFRs typically consist of low-permeable matrix rock containing a high-permeable fracture network. The effect of this network is that the advective flow bypasses the main portions of the reservoir where the oil is contained. Instead capillary forces and gravity forces are important for recovering the oil from these sections. We consider a linear fracture which is symmetrically surrounded by porous matrix. Advective flow occurs only along the fracture, while capillary driven flow occurs only along the axis of the matrix normal to the fracture. For a given set of relative permeability and capillary pressure curves, the behavior of the system is completely determined by the choice of two dimensionless parameters: (i) the ratio of time scales for advective flow in fracture to capillary flow in matrix $\alpha =\tau ^f/\tau ^m$ ; (ii) the ratio of pore volumes in matrix and fracture $\beta =V^m/V^f$ . A characteristic property of the flow in the coupled fracture–matrix medium is the linear recovery curve (before water breakthrough) which has been referred to as the “filling fracture” regime Rangel-German and Kovscek (J Pet Sci Eng 36:45–60, 2002), followed by a nonlinear period, referred to as the “instantly filled” regime, where the rate is approximately linear with the square root of time. We derive an analytical solution for the limiting case where the time scale $\tau ^{m}$ of the matrix imbibition becomes small relative to the time scale $\tau ^{f}$ of the fracture flow (i.e., $\alpha \rightarrow \infty $ ), and verify by numerical experiments that the model will converge to this limit as $\alpha $ becomes large. The model provides insight into the role played by parameters like saturation functions, injection rate, volume of fractures versus volume of matrix, different viscosity relations, and strength of capillary forces versus injection rate. Especially, a scaling number $\omega $ is suggested that seems to incorporate variations in these parameters. An interesting observation is that at $\omega =1$ there is little to gain in efficiency by reducing the injection rate. The model can be used as a tool for interpretation of laboratory experiments involving fracture–matrix flow as well as a tool for testing different transfer functions that have been suggested to use in reservoir simulators.  相似文献   

18.
Using Hamilton’s principle the coupled nonlinear partial differential motion equations of a flying 3D Euler–Bernoulli beam are derived. Stress is treated three dimensionally regardless of in-plane and out-of-plane warpings of cross-section. Tension, compression, twisting, and spatial deflections are nonlinearly coupled to each other. The flying support of the beam has three translational and three rotational degrees of freedom. The beam is made of a linearly elastic isotropic material and is dynamically modeled much more accurately than a nonlinear 3D Euler–Bernoulli beam. The accuracy is caused by two new elastic terms that are lost in the conventional nonlinear 3D Euler–Bernoulli beam theory by differentiation from the approximated strain field regarding negligible elastic orientation of cross-sectional frame. In this paper, the exact strain field concerning considerable elastic orientation of cross-sectional frame is used as a source in differentiations although the orientation of cross-section is negligible.  相似文献   

19.

Understanding pore-scale flow and transport processes is important for understanding flow and transport within rocks on a larger scale. Flow experiments on small-scale micromodels can be used to experimentally investigate pore-scale flow. Current manufacturing methods of micromodels are costly and time consuming. 3D printing is an alternative method for the production of micromodels. We have been able to visualise small-scale, single-phase flow and transport processes within a 3D printed micromodel using a custom-built visualisation cell. Results have been compared with the same experiments run on a micromodel with the same geometry made from polymethyl methacrylate (PMMA, also known as Perspex). Numerical simulations of the experiments indicate that differences in experimental results between the 3D printed micromodel and the Perspex micromodel may be due to variability in print geometry and surface properties between the samples. 3D printing technology looks promising as a micromodel manufacturing method; however, further work is needed to improve the accuracy and quality of 3D printed models in terms of geometry and surface roughness.

  相似文献   

20.
Stone’s model for gravity segregation in gas improved oil recovery (IOR) indicates the distance that injected gas and water travel together before the segregation being completed (length of complete segregation). This model is very useful for co-injection of water and gas into horizontal depleted reservoirs. A proof by Rossen and van Duijn showed that Stone’s model applies to steady-state gas–liquid flow, and also foam flow, in horizontal reservoirs as long as the standard assumptions of fractional flow theory (incompressible flow, Newtonian mobilities, local equilibrium) are applied. However, until now, there has been no analytical study on the length of segregation when co-injection of water and gas occurs in tilted reservoirs. In this article, in order to extent the validity of Stone’s model to tilted reservoirs, governing equations of fluids displacement based on fractional flow theory are solved by the method of characteristics, MOC. The results are then compared to Stone’s model and to the results of a three-dimensional finite-difference compositional reservoir simulator. This study shows that Stone’s model should be corrected for tilted reservoirs and that the presented math proof can model gravity segregation in gas IOR of tilted reservoirs, appropriately. The effect of co-injecting of water and gas into tilted reservoirs on recovery efficiency is also examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号