首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The focus of this paper is the derivation of a nonstandard model for microbial enhanced oil recovery (MEOR) that includes the interfacial area (IFA) between oil and water. We consider the continuity equations for water and oil, a balance equation for the oil–water interfacial area, and advective–dispersive transport equations for bacteria, nutrients, and biosurfactants. Surfactants lower the interfacial tension (IFT), which improves oil recovery. Therefore, the parametrizations of the IFT reduction and residual oil saturation are included as a function of the surfactant concentration in the model. We consider for the first time in context of MEOR, the role of IFA in enhanced oil recovery. The motivation to include the IFA is to model the hysteresis in the capillary pressure–saturation relationship in a physically based manner, to include the effects of observed bacteria migration toward the oil–water interface and the production of biosurfactants at the oil–water interface. A comprehensive 2D implementation based on two-point flux approximation and backward Euler is proposed. An efficient and robust linearization scheme is used to solve the nonlinear systems at each time step. Illustrative numerical simulations are presented. The differences in the oil recovery profiles obtained with and without IFA are discussed. The presented model can also be used to design new experiments toward a better understanding and eventually optimization of MEOR.  相似文献   

2.
Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.  相似文献   

3.
4.
Although, the effects of ultrasonic irradiation on multiphase flow through porous media have been studied in the past few decades, the physics of the acoustic interaction between fluid and rock is not yet well understood. Various mechanisms may be responsible for enhancing the flow of oil through porous media in the presence of an acoustic field. Capillary related mechanisms are peristaltic transport due to mechanical deformation of the pore walls, reduction of capillary forces due to the destruction of surface films generated across pore boundaries, coalescence of oil drops due to Bjerknes forces, oscillation and excitation of capillary trapped oil drops, forces generated by cavitating bubbles, and sonocapillary effects. Insight into the physical principles governing the mobilization of oil by ultrasonic waves is vital for developing and implementing novel techniques of oil extraction. This paper aims at identifying and analyzing the influence of high-frequency, high-intensity ultrasonic radiation on capillary imbibition. Laboratory experiments were performed using cylindrical Berea sandstone and Indiana limestone samples with all sides (quasi-co-current imbibition), and only one side (counter-current imbibition) contacting with the aqueous phase. The oil saturated cores were placed in an ultrasonic bath, and brought into contact with the aqueous phase. The recovery rate due to capillary imbibition was monitored against time. Air–water, mineral oil–brine, mineral oil–surfactant solution and mineral oil-polymer solution experiments were run each exploring a separate physical process governing acoustic stimulation. Water–air imbibition tests isolate the effect of ultrasound on wettability, capillarity and density, while oil–brine imbibition experiments help outline the ultrasonic effect on viscosity and interfacial interaction between oil, rock and aqueous phase. We find that ultrasonic irradiation enhances capillary imbibition recovery of oil for various fluid pairs, and that such process is dependent on the interfacial tension and density of the fluids. Although more evidence is needed, some runs hint that wettability was not altered substantially under ultrasound. Preliminary analysis of the imbibition recoveries also suggests that ultrasound enhances surfactant solubility and reduce surfactant adsorption onto the rock matrix. Additionally, counter-current experiments involving kerosene and brine in epoxy coated Berea sandstone showed a dramatic decline in recovery. Therefore, the effectiveness of any ultrasonic application may strongly depend on the nature of interaction type, i.e., co- or counter-current flow. A modified form of an exponential model was employed to fit the recovery curves in an attempt to quantify the factors causing the incremental recovery by ultrasonic waves for different fluid pairs and rock types.  相似文献   

5.
Residual oil saturation reduction and microbial plugging are two crucial factors in microbial-enhanced oil recovery (MEOR) processes. In our previous study, the residual saturation was defined as a nonlinear function of the trapping number, and an explicit relation between the residual oil saturation and the trapping number was incorporated into a fully coupled biological (B) and hydrological (H) finite element model. In this study, the BH model is extended to consider the impact of rock heterogeneity on microbial-enhanced oil recovery phenomena. Numerical simulations of core flooding experiments are performed to demonstrate the influences of different parameters controlling the onset of oil mobilization. X-ray CT core scans are used to construct numerical porosity-permeability distributions for input to the simulations. Results show clear fine-scale fingering processing, and that trapping phenomena have significant effects on residual oil saturation and oil recovery in heterogeneous porous media. Water contents and bacterial distributions for heterogeneous porous media are compared with those for homogenous porous media. The evolution of the trapping number distribution is directly simulated and visualized. It is shown that the oil recovery efficiency of EOR/MEOR will be lower in heterogeneous media than in homogeneous media, largely due to the difficulty in supplying surfactant to unswept low-permeability zones. However, MEOR also provides efficient plugging along high-permeability zones which acts to increase sweep efficiency in heterogeneous media. Thus, MEOR may potentially be more suited for highly heterogeneous media than conventional EOR.  相似文献   

6.
Surfactant loss due to adsorption on the porous medium of an oil reservoir is a major concern in enhanced oil recovery. Surfactant loss due to adsorption on the reservoir rock weakens the effectiveness of the injected surfactant in reducing oil–water interfacial tension (IFT) and making the process uneconomical. In this study, surfactant concentrations in the effluent of the corefloods and oil–water IFT were determined under different injection strategies. It was found that in an extended waterflood following a surfactant slug injection, surfactant desorbed in the water phase. This desorbed surfactant lasted for a long period of the waterflood. The concentration of the desorbed surfactant in the extended waterflood was very low but still an ultralow IFT was obtained by using a suitable alkali. Coreflood results show an additional recovery of 13.3% of the initial oil in place was obtained by the desorbed surfactant and alkali. Results indicate that by utilizing the desorbed surfactant during the extended waterflood operation the efficiency and economics of the surfactant flood can be improved significantly.  相似文献   

7.
In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario applied to filtration model provides formation of two oil banks during recovery. This feature is not reproduced by application of REA model or DBF with growth in attached phase. This makes it possible to select a right model based on the qualitative analysis of the experimental data. A criterion is introduced to study the process efficiency: the dimensionless time at which average recovery between pure water injection and maximum surfactant effect is reached. This characteristic recovery period (CRP) was studied as a function of the different MEOR parameters such as bacterial activity, filtration coefficients, and substrate injection concentrations. For both growth scenarios, there is a zone of optimal activity at which the CRP is minimal. Dependence of the CRP on substrate concentration for uniform growth scenario has also an optimal zone. Therefore, growth rate and the substrate concentration should be above a certain threshold value and still not be too high to obtain the minimum CRP. On the other hand, no such zone was found if the bacteria could grow only in the attached phase. Dependencies on both the injected concentration and filtration coefficient are monotonous in this case.  相似文献   

8.
Liu  Zheyu  Cheng  Hongjie  Li  Yanyue  Li  Yiqiang  Chen  Xin  Zhuang  Yongtao 《Transport in Porous Media》2019,126(2):317-335

Surfactant/polymer (SP) floods have significant potentials to recover remaining oil after water flooding. Their efficiency can be maximized by fully utilizing synergistic effect of polymer and surfactant. Various components adsorbed on the rock matrix due to chromatographic separation can significantly weaken the synergistic effect. Due to scale and dimensional problems, it is hard to investigate chromatographic separation among various components using one-dimensional natural cores. This study compared the adsorption difference between artificial and natural cores and developed a three-dimensional artificial core model of a 1/4 5-spot configuration to simulate oil recovery in multilayered reservoirs with high, middle and low permeability for each layer. Sampling wells were established to monitor pressures, and effluent fluids were acquired to measure interfacial tension (IFT) and viscosity. Then, distances of synergy of polymer and surfactant in three layers were evaluated. Meanwhile, electrodes were set in the model to measure oil saturation variation with resistance changes at different locations. Through comparison with IFT values, the contribution of improved swept volume and oil displacement efficiency to oil recovery during SP flooding could be known. Results showed that injected 0.65 PV of SP could improve oil recovery by 21.56% when water cut reached 95% after water flooding. The retention ratio of polymer viscosity was kept 55.3% at the outlet, but IFT was only 2 mN/m within the 3/10 injector–producer spacing during SP injection. Although subsequent water flooding could result in surfactant desorption and the IFT became 10?2?mN/m within the 3/10 injector–producer spacing, the IFT turned to 2?mN/m at the half of the model. The enhanced displacement efficiency by reducing IFT only worked within three-tenth location of the model in the high permeability layer, while the enlarged swept volume contributed much in the other areas.

  相似文献   

9.
The rheological behavior and interfacial properties of olive oil–water emulsions stabilized by surfactant and clay particles (smectite) were studied to evaluate the effect of particles and surfactant distribution both in the bulk phase and at the oil–water interface. The temperature sweep of surfactant solutions and emulsions with and without clay particles showed the critical effect of the solid particles on the viscosity change. The mechanism of adsorption of surfactant molecules onto clay particles has a direct impact on the micellization and gelling temperatures. Indeed, the presence of clay particles caused a slight decrease in the micellization temperature and a total cancellation of the gelling phenomenon. Dynamic interfacial tension values demonstrated that clay particles would not compete with the surfactant for adsorption at the interface. However, the significant increase in the elastic properties of the interface that was observed accounts for their accumulation in the vicinity of the interface, probably at the level of surfactant polar head groups. Thus, the clay particles would form a mechanical barrier, preventing coalescence of emulsion droplets.  相似文献   

10.
A dynamic pore network model, capable of predicting the displacement of oil from a porous medium by a wettability-altering and interfacial tension reducing surfactant solution, is presented. The key ingredients of the model are (1) a dynamic network model for the displacement of oil by aqueous phase taking account of capillary and viscous effects, (2) a simulation of the transport of surfactant through the network by advection and diffusion taking account of adsorption on the solid surface, and (3) the coupling of these two by linking the contact angle and interfacial tension appearing in the dynamic network simulation to the local concentration of surfactant computed in the transport simulation. The coupling is two-way: The flow field used to advect the surfactant concentration is that associated with the displacement of oil by the injected aqueous phase, and the surfactant concentration influences the flow field through its effect on the capillarity parameters. We present results obtained using the model to validate that it reproduces the displacement patterns observed by other authors in two-dimensional networks as capillary number and mobility ratio are varied, and to illustrate the effects of surfactant on displacement patterns. A mechanism is demonstrated whereby in an initially mixed-wet medium, surfactant-induced wettability alteration can lead to stabilization of displacement fronts.  相似文献   

11.
Single-walled carbon nanotube-silica nanohybrid particles are a very promising material that could be used for enhanced oil recovery because of their interfacial activity. To demonstrate the basic principle, aqueous nanohybrid particle dispersions were evaluated by looking at the effect of pH, surfactant, and polymer. The results showed that pH did not have significant effect on the dispersion stability of nanohybrid particles. Although surfactant could improve the dispersion stability, it reduced the interfacial activity of the nanohybrid particles, causing them to stay in the aqueous phase. The best nanohybrid particle dispersion stability was found upon polymer addition, where the dispersions were stable for more than a week even at low polymer concentration (50?ppm). One-dimensional sand-pack studies were performed to evaluate the flow of the nanohybrid particles through porous media. The results showed that most of the nanohybrid particles (>99%) could pass through a column packed with glass beads while a measurable fraction of the particles was retained in the column packed with crushed Berea. When the columns contained a residual saturation of decane, additional nanohybrid particles were retained at the oil/water interface in both glass beads and crushed Berea sand media. The sand pack studies showed that not only can the nanohybrid particles flow through porous media but also about half of the particles injected will go the O/W interface when the porous medium contains a residual saturation of hydrocarbon, where they could be used to support a catalytic conversion of components of the oil in reservoirs.  相似文献   

12.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

13.
14.
Multiphase flow with a simplified model for oil entrapment   总被引:3,自引:0,他引:3  
A computationally simple procedure is described to model effects of oil entrapment on three-phase permeability-saturation-capillary pressure relations. The model requires knowledge of airwater saturation-capillary pressure relations, which are assumed to be nonhysteretic and are characterized by Van Genuchten's parametric model; scaling factors equal to the ratio of water surface tension to oil surface tension and to oil-water interfacial tension; and the maximum oil (also referred to as nonwetting liquid in a three-phase medium) saturation which would occur following water flooding of oil saturated soil. Trapped nonwetting liquid saturation is predicted as a function of present oil-water and air-oil capillary pressures and minimum historical water saturation since the occurrence of oil at a given location using an empirically-based algorithm. Oil relative permeability is predicted as a simple function of apparent water saturation (sum of actual water saturation and trapped oil saturation) and free oil saturation (difference between total oil and trapped oil saturation), and water relative permeability is treated as a unique function of actual water saturation. The proposed method was implemented in a two-dimensional finite-element simulator for three-phase flow and component transport, MOFAT. The fluid entrapment model requires minimal additional computational effort and computer storage and is numerically robust. The applicability of the model is illustrated by a number of hypothetical one- and two-dimensional simulations involving infiltration and redistribution with changes in water-table elevations. Results of the simulations indicate that the fraction of a hydrocarbon spill that becomes trapped under given boundary conditions increases as a nonlinear function of the maximum trapped nonwetting liquid saturation. Dense organic liquid plumes may exhibit more pronounced effects of entrapment due to the more dynamic nature of flow, even under static water table conditions. Disregarding nonwetting fluid entrapment may lead to significant errors in predictions of immiscible plume migration.  相似文献   

15.
Microbial enhanced oil recovery (MEOR) represents a possible cost-effective tertiary oil recovery method. Although the idea of MEOR has been around for more than 75 years, even now little is known of the mechanisms involved. In this study, Draugen and Ekofisk enrichment cultures, along with Pseudomonas spp. were utilized to study the selected MEOR mechanisms. Substrates which could potentially stimulate the microorganisms were examined, and l-fructose, d-galacturonic acid, turnose, pyruvic acid and pyruvic acid methyl ester were found to be the best utilized by the Ekofisk fermentative enrichment culture. Modelling results indicated that a mechanism likely to be important for enhanced oil recovery is biofilm formation, as it required a lower in situ cell concentration compared with some of the other MEOR mechanisms. The bacterial cells themselves were found to play an important role in the formation of emulsions. Bulk coreflood and flow cell experiments were performed to examine MEOR mechanisms, and microbial growth was found to lead to possible alterations in wettability. This was observed as a change in wettability from oil wet (contact angle 154°) to water wet (0°) due to the formation of biofilms on the polycarbonate coupons.  相似文献   

16.
The displacement of oil by anionic surfactant solutions in oil-wet horizontal capillary tubes is studied. The position of the oil–water interface is recorded with time. The surfactant solution used is a mixture of several different surfactants and co-solvents tailored to produce ultra-low interfacial tension (IFT) for the specific oil used in the study. The surfactant solution results in ultra-low IFT at optimum salinity and room temperature. Several experimental parameters including the capillary tube radius and surfactant solution viscosity are varied to study their effect on the interface speed. Two different models are used to predict the oil–water interface position with time. In the first model, it is assumed that the IFT is constant and ultra-low throughout the experiments. The second model involves change of wettability and IFT by adsorption of surfactant molecules to the oil–water interface and the solid surface. Comparing the predictions to the experimental results, it is observed that the second model provides a better match, especially for smaller capillary tubes. The model is then used to predict the imbibition rate for very small capillary tubes, which have equivalent permeability close to oil reservoirs. The results show that the oil displacement rate is limited by the rate of diffusion of surfactants to the interface.  相似文献   

17.
致密砂岩逆向渗吸作用距离实验研究   总被引:2,自引:1,他引:1  
中国致密油储量丰富, 但多数致密储层波及效率低, 衰竭开发效果较差. 逆向渗吸是致密油藏注水开发过程中的一种重要的提高采收率途径, 目前许多学者主要针对致密油藏渗吸采收率及其影响因素开展研究, 而对于渗吸作用距离(表征致密油藏渗吸作用范围)研究较少. 本文采用CT在线扫描装置建立了致密岩心逆向渗吸作用距离量化方法, 明确了逆向渗吸的作用范围, 进一步研究了流体压力、含水饱和度、岩心渗透率和表面活性剂对逆向渗吸作用距离的影响, 阐明了逆向渗吸作用距离与渗吸采收率的关系, 为提高致密油藏采收率提供指导. 研究结果表明, 渗透率为0.3 mD的致密岩心逆向渗吸作用距离尺度仅为1.25 ~ 1.625 cm; 5 MPa条件下渗透率为0.302 mD的岩心逆向渗吸作用距离为1.375 cm. 在本实验条件下, 流体压力和初始含水饱和度对致密岩心逆向渗吸作用距离的影响较小, 而渗透率和表面活性剂对致密岩心逆向渗吸作用距离的影响显著, 渗透率为0.784 mD的岩心逆向渗吸作用距离相较于渗透率为0.302 mD的岩心提高2.63倍. 逆向渗吸作用距离是渗吸采收率表征的重要参数, 决定了逆向渗吸作用的波及范围.   相似文献   

18.
19.
In oil recovery from fractured reservoirs, dynamic spontaneous imbibition (DSI) plays an important role. Conventional equations used for characterizing dynamic spontaneous imbibition neglect the effects of the driving forces acting across the wetting and non-wetting phases which are flowing in opposite directions. Such effects, defined as interfacial coupling effects (ICE), are known to cause a decrease in the calculated flow rate in drainage processes. Moreover, none of the numerical models have considered a variable inlet saturation (S*) for DSI. A new theoretical model has been developed using generalized transport equations to describe dynamic spontaneous imbibition for immiscible two-phase flow processes. The inclusion of interfacial coupling effects provides a more accurate way to describe dynamic spontaneous imbibition. Furthermore, the addition of variable inlet saturation allows one to establish whether the inlet-face saturation (S*) increases from the initial saturation to 1−Sro, or whether it can remain constant and equal to one minus the residual saturation to the non-wetting phase (1−Sro).  相似文献   

20.
A fundamental study of microscopic mechanisms and pore-level phenomena in the Microbial Improved Oil Recovery method has been investigated. Understanding active mechanisms to increase oil recovery is the key to predict and plan MIOR projects successfully. This article presents the results of visualization experiments carried out in a transparent pore network model. In order to study the pore scale behavior of bacteria, dodecane and an alkane oxidizing bacterium, Rhodococcus sp. 094, suspended in brine, are examined for evaluating the performance of bacterial flooding in the glass micromodel. The observations show the effects of bacteria on remaining oil saturation, allowing us to get better insight on the mechanisms. Bacterial mass composed of bacteria and bioproducts growth in the fluid interfaces and pore walls have been recorded and are presented. No gas is observed throughout any of the experiments. The biomass blocks some pores and pore-throats, and thereby changing the flow pattern. As a consequent, the flow pattern change together with the previously proposed mechanisms, including the interfacial tension reduction and wettability changes are recognized as active mechanisms in the MIOR process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号