首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural and energetic characteristics of LaCl n (3 − n)+ (n = 1−8) complexes have been calculated by the ab initio MP2 method. Original Russian Text ? V.Yu. Buz’ko, Kh.B. Kushkhov, M.B. Buz’ko, V.T. Panyushkin, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 11, pp. 1899–1905.  相似文献   

2.
The structural and energetic characteristics of AcF n (3 ? n)+ complexes (n = 1?7) have been calculated by the ab initio RHF and MP2 methods.  相似文献   

3.
Specific interactions that appear in metal salts and complexes with cluster boron anions B n H n 2− (n = 6, 10, 12) have been discussed. These interactions, as well as chemical bonds, involve vertices, edges, or faces of boron polyhedra. Specific interactions have a considerable effect on the structure of compounds, making a significant contribution to the formation of the unit cell and forming supramolecular assemblies. Compounds containing B n H n 2− cluster anions shed new light onto the nature of specific interactions owing to their many-center character and great variety.  相似文献   

4.
Homoleptic mononuclear and binuclear ruthenium carbonyls Ru(CO) n (n = 3–5) and Ru2(CO) n (n = 8,9) have been investigated using density functional theory. Sixteen isomers are obtained. For Ru(CO)5, the lowest-energy structure is the singlet D 3h trigonal bipyramid. Similar to Os(CO)5, the distorted square pyramid isomer with C 2v symmetry lies ∼7 kJ·mol−1 higher in energy. For the unsaturated mononuclear ruthenium carbonyls Ru(CO)4 and Ru(CO)3, a singlet structure with C 2v symmetry and a C s bent T-shaped structure are the lowest-energy structures, respectively. The global minimum for the Ru2(CO)9 is a singly bridged (CO)4Ru(μ-CO)Ru(CO)4 structure. A triply bridged Ru2(CO)6(μ-CO)3 structure analogous to the known Fe2(CO)9 structure is predicted to lie very close in energy to the global minimum. For Ru2(CO)8, the doubly bridged C 2 structure is predicted to be the global minimum. For the lowest-energy structures of M2(CO) n (M = Fe, Ru, Os, n = 9,8), it is found that both iron and ruthenium are favored to form structures containing more bridging carbonyl groups, while osmium prefers to have structures with less bridging carbonyl groups. The study of dissociation energy shows that the dissociation of Ru2(CO)9 into the mononuclear fragments Ru(CO)5 + Ru(CO)4 is a less energetically demanding process than the dissociation of one carbonyl group from Ru2(CO)9 to give Ru2(CO)8.  相似文献   

5.
This survey concerns the coordination ability of B n H n 2− (n = 6, 10, 12) boron cluster anions and their derivatives in complex formation. Boron cluster anions form four types of compounds: salts of organic cations and alkali-metal cations, including Cat2B n H n , where specific interactions can be observed between a cation Cat and a boron cluster anion; salts of protonated anions CatB6H7 and CatB10H11, analogues of Cat[MB n H n ] complexes, where an extra hydrogen atom appears bound with the BBB face of a boron polyhedron and performs as a hard acceptor; metal complexes with outer-sphere boron cluster anions where specific ligand-ligand interactions may be observed between a boron cluster anion and an inner-sphere ligand; and true metal complexes with boron cluster anions that enter the inner coordination sphere. The last case characterizes closo-hydroborate anions as polydentate ligands whose denticity can vary widely under the effect of substituents or other ligands in the complex.  相似文献   

6.
The equilibrium geometric parameters and the energetic characteristics of fullerenol molecules and ions C60(OH)24 − n (OL) n and C60(OH)24 − n (OL) n L+ successively substituted by alkali metal atoms L with the number of substitutions n = 1–24 have been calculated by the density functional theory B3LYP/6-31G* method. For all compounds, the structure of the covalent [C60O24] cage in which the oxygen atoms are bound to the C atoms of the six-membered [C6] rings of the fullerene cage, six O atoms per [C6] ring. The lithium derivatives have been considered in most detail. Computations have shown that the first four single substitutions of Li for H in the OH groups attached to the same C6 ring require very low energy inputs, no more than 1 kcal/mol, and can spontaneously occur under common conditions. The further fifth and sixth single substitutions in the same C6 ring are endothermic, but the required energy inputs are also modest (on the order of few kcal/mol). The first and second cooperative substitutions of Li for H simultaneously in all four hydroxylated C6 rings require energy inputs of ∼3 and 11.6 kcal/mol, respectively; in the third and fourth fourfold substitutions, the energies increase by ∼15–16 kcal/mol. The mean partial energy per single substitution of Li for H in this series (n = 1−6) is ∼2 kcal/mol. Calculations have predicted that all C60(OH)24 − n (OLi) n molecules with intermediated degrees of substitution (n = 1−16) can be obtained under the conditions of relatively low energy inputs (for example, under the conditions of the MALDI experiment) and can exist in the isolated state. For the sodium- and potassium-substituted analogues, the qualitative pattern persists, but the H/Na and H/K substitutions are somewhat more endothermic. The computational results are compared with the MALDI mass spectrum of the [C60(OH) x (ONa) y -CH3COONa) system.  相似文献   

7.
The equilibrium geometric parameters and energetic and spectroscopic characteristics of low-lying conformers for several series of model cage-substituted (mixed) borane, alane, and gallane closo-dianions M i M′12 − i H122−(M, M′ = B, Al, Ga), as well as of “bare” gallium-aluminum anions Ga i Al12−i with i = 0–12, were calculated within the B3LYP approximation of the density functional theory using 6–31G* and 6–311+G** basis sets. Differences in structure and stability between alanoborane clusters of similar composition are revealed. In clusters where the M and M’ heteroatoms are close in size and electronegativity (in gallonoalanes and gallium-aluminum anions), successive substitutions of M′ for M are accompanied by small energy changes and occur quasi-stochastically in different positions of the cage. When the substituents are significantly different (in alanoboranes), mixed clusters are unstable against disproportionation into homonuclear “predecessors” M12H122− and M′12H122−, and the most favorable M i M′12 − i H122− structures among them are those in which M i M′12 − i the cages are subdivided into homonuclear “subclusters” M i and M′t′12−i with a maximal number of homonuclear bonds (M-M and M′-M′) and a minimal number of heteronuclear bonds (M-M′).  相似文献   

8.
A systematic density functional theory and wave function theory investigation performed in this work reveals a planar-to-icosahedral structural transition between n = 4–5 in the partially hydrogenated B12H n 0/− clusters (n = 1–6) upon hydrogenation of all-boron B120/−. Coupled cluster calculations with triple excitations (CCSD(T)) indicate that a distorted icosahedral B12H6 cluster with C2 symmetry is overwhelmingly favored (by 35 kcal/mol) over the recently proposed perfectly planar borozene (D3h B12H6) (Szwacki et al., Nanoscale Res Lett 4:1085, 2009) which proves to be a high-lying local minimum. A similar 2D–3D structural transition occurs to the corresponding boron boronyl analogues of B12(BO) n with n –BO terminals. Detailed adaptive natural density partitioning (AdNDP) analyses reveal the bonding patterns of these quasi-planar or cage-like clusters which are characterized with delocalized σ and π molecular orbitals. The electron detachment energies of the concerned anions and excitation energies of the neutrals are also predicted to facilitate their future experimental characterizations.  相似文献   

9.
Geometry optimizations were performed on monoanionic and dianionic clusters of sulfate anions with carbon dioxide, SO4−1/−2(CO2) n , for n = 1–4, using the B3PW91 density functional method with the 6-311 + G(3df) basis set. Limited calculations were carried out with the CCSD(T) and MP2 methods. Binding energies, as well as adiabatic and vertical electron detachment energies, were calculated. No covalent bonding is seen for monoanionic clusters, with O3SO–CO2 bond distances between 2.8 and 3.0 ?. Dianionic clusters show covalent bonding of type [O3S–O–CO2]−2, [O3S–O–C(O)O–CO2]−2, and [O2C–O–S(O2)–O–CO2]−2, where one or two oxygens of SO4−2 are shared with CO2. Starting with n = 2, the dianionic clusters become adiabatically more stable than the corresponding monoanionic ones. Comparison with SO4−1/−2(SO2) n and CO3−1/−2(SO2) n clusters, the binding energies are smaller for the present SO4−1/−2(CO2) n systems, while stabilization of the dianion occurs at n = 2 for both SO4−2(CO2) n and SO4−2(SO2) n , but only at n = 3 for CO3−2(SO2) n .  相似文献   

10.
The structural and energetic characteristics of aqua complexes Y(H2O) n 3+ (n = 1–10) have been calculated by the ab initio RHF and MP2 methods.  相似文献   

11.
A self-catalytic effect attributed to Mn2+ ions was observed when studying the oxidation of L-threonine by permanganate ions. The process obeys the rate equation:
  相似文献   

12.
The structural and thermodynamic properties of oligomeric anions [M n X3n+ 1] (M = Al, Ga, In; X = F, Cl, Br, I; n = 2, 3, 4) have been obtained by the density functional theory B3LYP method with the LAN2DZ(d) and LAN2DZ(d)+ basis sets. A wide diversity of structural isomers was found for trimeric fluoride anions M3F10. Among the trimers, except In3F10, the most stable is a linear isomer composed of two MX3 molecules coordinated to the MX4 anion. The formation of tetrameric anions M4X13 was demonstrated to be thermodynamically allowed at low temperatures at MX3: X > 4: 1. The existence of higher oligomers is less probable. The affinity of oligomer halides (MX3) n for halide ions increases with an increase in n. The propensity to form oligomeric anions decreases in the series F > Cl ≥ Br > I. The fluoride systems show a tendency to form structures with CN = 5 and 6, these structures for In being the most stable. Original Russian Text ? A.Yu. Timoshkin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 1, pp. 87–100.  相似文献   

13.
The molecular structure of triphenylsilane has been investigated by gas-phase electron diffraction and theoretical calculations. The electron diffraction intensities from a previous study (Rozsondai B, Hargittai I, J Organomet Chem 334:269, 1987) have been reanalyzed using geometrical constraints and initial values of vibrational amplitudes from calculations. The free molecule has a chiral, propeller-like equilibrium conformation of C 3 symmetry, with a twist angle of the phenyl groups τ = 39° ± 3°; the two enantiomeric conformers easily interconvert via three possible pathways. The low-frequency vibrational modes indicate that the three phenyl groups undergo large-amplitude torsional and out-of-plane bending vibrations about their respective Si–C bonds. Least-squares refinement of a model accounting for the bending vibrations gives the following bond distances and angles with estimated total errors: r g(Si–C) = 1.874 ± 0.004 ?, 〈r g(C–C)〉 = 1.402 ± 0.003 ?, 〈r g(C–H)〉 = 1.102 ± 0.003 ?, and ∠aC–Si–H = 108.6° ± 0.4°. Electron diffraction studies and MO calculations show that the lengths of the Si–C bonds in H4−n SiPh n molecules (n = 1–4) increase gradually with n, due to π → σ*(Si–C) delocalization. They also show that the mean lengths of the ring C–C bonds are about 0.003 ? larger than in unsubstituted benzene, due to a one hundredth angstrom lengthening of the Cipso–Cortho bonds caused by silicon substitution. A small increase of r(Si–H) and decrease of the ipso angle with increasing number of phenyl groups is also revealed by the calculations.  相似文献   

14.
Complexes Ph3(n-Pr)P2+[CoI4]2− (I) and [Ph3(n-Am)P]2+ [CoI4]2− (II) were synthesized by reactions of triphenyl(alkyl)phosphonium iodide with cobalt(II) iodide in acetone. According to the X-ray diffraction data, complexes I and II consist of tetrahedral triphenyl(alkyl)phosphonium cations (for I, P-C is 1.787(4)–1.804(4) ? and CPC is 106.73(18)°–111.4(18)°; for II P-C is 1.786(6)–1.802(6) ? and CPC is 107.6(3)°–111.7(3)°) and [CoI4]2− anions (Co-I 2.5923(6)–2.6189(6) ?, ICoI 101.86(2)°–113.25(2)° for I; Co-I 2.5899(9)–2.6171(9) 107.01(3)°–110.47(3)° for II).  相似文献   

15.
The molecular structure and magnetic properties of alkoxy-polyoxovanadates [VIV n VV 6−n O7(OR)12]4−n (n = 4, 3, 2) were studied within the framework of the DFT approach. The equilibrium geometric configurations of all complexes studied in this work are characterized by a distorted octahedral hexavanadate core; the unpaired d-electrons are localized on the metal centers (VIV). The localized spin density distribution is also retained in the low-temperature crystal structures of the compounds whose magnetic properties are described by the Heisenberg-Dirac-van Vleck exchange spin Hamiltonian. The exchange parameters calculated using the broken symmetry formalism suggest predominance of ferromagnetic coupling between vanadium(IV) ions in the μ-OR bridged dimeric units {VIVO(OR)VIV} and in the diagonal pairs {VIVOVIV} (n = 4). The results obtained indicate that the magnitude and sign of the exchange parameters in the isostructural dimeric units within the hexavanadate core depend on the total number of unpaired electrons in the system.  相似文献   

16.
Lithium and silicon have the capability to form hypervalent structures, such as Li3 and SiH5, which is contrasted by the absence of this capability in hydrogen and carbon, as exemplified by H3 and CH5 which, although isoelectronic to the former two species, have a distortive, bond-localizing propensity. This well-known fact is nicely confirmed in our DFT study at BP86/TZ2P. We furthermore show that the hypervalence of Li and Si neither originates from the availability of low-energy 2p and 3d AOs, respectively, nor from differences in the bonding pattern of the valence molecular orbitals; there is, in all cases, a 3-center-4-electron bond in the axial X–A–X unit. Instead, we find that the discriminating factor is the smaller effective size of C compared to the larger Si atom, and the resulting lack of space around the former. Interestingly, a similar steric mechanism is responsible for the difference in bonding capabilities between H and the effectively larger Li atom. This is so, despite the fact that the substituents in the corresponding symmetric and linear dicoordinate H3 and Li3 are on opposite sides of the central atom. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
F. Matthias BickelhauptEmail:
  相似文献   

17.
The surface active and aggregation behavior of ionic liquids of type [C n mim][X] (1-alkyl-3-methylimidazolium (mim) halides), where n = 4, 6, 8 and [X] = Cl, Br and I was investigated by using three techniques: surface tension, 1H nuclear magnetic resonance (NMR) spectroscopy, small-angle neutron scattering (SANS). A series of parameters including critical aggregation concentrations (CAC), surface active parameters and thermodynamic parameters of aggregation were calculated. The 1H NMR chemical shifts and SANS measurements reveal no evidence of aggregates for the short-chain 1-butylmim halides in water and however small oblate ellipsoidal shaped aggregates are formed by ionic liquids with 1-hexyl and 1-octyl chains. Analysis of SANS data analysis at higher concentrations of [C8mim][Cl] showed that the microstructures consist of cubically packed molecules probably through ππ and hydrogen bond interactions.  相似文献   

18.
Results are presented concerning the role of oxalic acid, salicylic acid and glycine as coimpregnation ingredients in preparation of Pd/Al2O3 catalysts from PdCl 4 2– and PdBr 4 2– solutions.
, , , Pd/Al2O3 PdCl 4 2– PdBr 4 2– .
  相似文献   

19.
The phase composition and microstructure of La1 − x Ca x MnO3 (x = 0–1) materials prepared by the Pechini method from polymer-salt stocks were studied after testing these materials in methane oxidation. According to X-ray diffraction data, the reaction medium causes no significant changes in the samples, while high-resolution transmission electron microscopy indicates that the x > 0.3 samples are unstable. Under the action of the reaction medium, the perovskite structure of these samples undergoes partial decomposition accompanied by the formation of planar defects having a lower manganese content. The number and degree of segregation of these defects increase with increasing calcium content. The calcium oxide and manganese oxide phases as segregated nanoparticles are observed on the particle surface. These changes are caused by the decrease in the oxygen content of the manganites under the action of the reaction medium $ (T,P_{O_2 } ) $ (T,P_{O_2 } ) , by the formation of vacancies, and by the variation of the charge of the manganese cations, as well as by the charge ordering tendency of the manganese cations. Therefore, the observed changes in catalytic activity under the action of the reaction medium for x > 0.3 can be due to perovskite decomposition accompanied by the formation of planar defects, the release of the manganese oxide and calcium oxide phases, and their subsequent sintering.  相似文献   

20.
The structures of earlier synthesized Pb(II) complexes with closo-BnH n 2− (n = 6, 10, 12) anions and their derivatives are analyzed in terms of M-B and M-H-B distances and MHB angles. In all of the complexes, the metal-ligand bonds are due to pure (MHB)-, (MHB)-2, or (MHB)3-type multicenter interactions or their combination. The existence of straight M-B bonds (M-B(H) type) along with the above interactions was deduced only for the lead(II) complex with the closo-hexaborate anion. Original Russian Text ? E.A. Malinina, L.V. Goeva, N.T. Kuznetsov, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 3, pp. 464–471.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号