首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Turing instabilities for reaction–diffusion systems are studied from the Fourier normal modes which appear by searching the solution obtained from linearization of the reaction–diffusion system at the spatially homogeneous steady state. The linear stability analysis is only appropriate when the temporal eigenvalues associated to every given spatial eigenvalue have non-zero real part. If the real part of the temporal eigenvalue in a normal mode is equal to zero there is no enough information coming from the linearized system. Given an arbitrary spatial eigenvalue, by equating to zero the real part of the corresponding temporal eigenvalue will lead to a neutral stability manifold in the parameter space. If for a given spatial eigenvalue the other parameters in the reaction–diffusion process drive the system to the neutral manifold, then neither stability nor instability can be warranted by the usual linear analysis. In order to give a sketch of the nonlinear analysis we use a multiple scales method. As an application, we analyze the behavior of solutions to the Schnakenberg trimolecular reaction kinetics in the presence of diffusion.  相似文献   

2.
An SEI epidemic model with constant recruitment and infectious force in the latent period is investigated. This model describes the transmission of diseases such as SARS. The behavior of positive solutions to a reaction–diffusion system with homogeneous Neumann boundary conditions are investigated. Sufficient conditions for the local and global asymptotical stability are given by linearization and by the method of upper and lower solutions and its associated monotone iterations. Our result shows that the disease-free equilibrium is globally asymptotically stable if the contact rate is small.  相似文献   

3.
Convergence dynamics of reaction–diffusion recurrent neural networks (RNNs) with continuously distributed delays and stochastic influence are considered. Some sufficient conditions to guarantee the almost sure exponential stability, mean value exponential stability and mean square exponential stability of an equilibrium solution are obtained, respectively. Lyapunov functional method, M-matrix properties, some inequality technique and nonnegative semimartingale convergence theorem are used in our approach. These criteria ensuring the different exponential stability show that diffusion and delays are harmless, but random fluctuations are important, in the stochastic continuously distributed delayed reaction–diffusion RNNs with the structure satisfying the criteria. Two examples are also given to demonstrate our results.  相似文献   

4.
A finite difference method for fractional partial differential equation   总被引:1,自引:0,他引:1  
An implicit unconditional stable difference scheme is presented for a kind of linear space–time fractional convection–diffusion equation. The equation is obtained from the classical integer order convection–diffusion equations with fractional order derivatives for both space and time. First-order consistency, unconditional stability, and first-order convergence of the method are proven using a novel shifted version of the classical Grünwald finite difference approximation for the fractional derivatives. A numerical example with known exact solution is also presented, and the behavior of the error is examined to verify the order of convergence.  相似文献   

5.
This article is concerned with a delayed Lotka–Volterra two-species prey–predator diffusion system with a single discrete delay and homogeneous Dirichlet boundary conditions. By applying the implicit function theorem, the asymptotic expressions of positive equilibrium solutions are obtained. And then, the asymptotic stability of positive equilibrium solutions is investigated by linearizing the system at the positive equilibrium solutions and analyzing the associated eigenvalue problem. It is demonstrated that the positive equilibrium solutions are asymptotically stable when the delay is less than a certain critical value and unstable when the delay is greater than this critical value. In addition, it is also found that the system under consideration can undergo a Hopf bifurcation when the delay crosses through a sequence of critical values. Finally, to verify our theoretical predictions, some numerical simulations are also included.  相似文献   

6.
In the previous paper [9], we showed time asymptotic behavior with detailed decaying rates of perturbations of periodic traveling reaction–diffusion waves under small initial perturbations with a Gaussian rate and an algebraic rate. Here, we establish pointwise nonlinear stability up to an appropriate modulation of periodic traveling waves of systems of viscous conservation laws under small algebraic decaying initial data. Similar to the reaction–diffusion equations, by using Bloch decomposition, we start with pointwise bounds on the Green function of the linearized operator about underlying solutions.  相似文献   

7.
This paper is concerned with a compact finite difference method for solving systems of two-dimensional reaction–diffusion equations. This method has the accuracy of fourth-order in both space and time. The existence and uniqueness of the finite difference solution are investigated by the method of upper and lower solutions, without any monotone requirement on the nonlinear term. Three monotone iterative algorithms are provided for solving the resulting discrete system efficiently, and the sequences of iterations converge monotonically to a unique solution of the system. A theoretical comparison result for the various monotone sequences is given. The convergence of the finite difference solution to the continuous solution is proved, and Richardson extrapolation is used to achieve fourth-order accuracy in time. An application is given to an enzyme–substrate reaction–diffusion problem, and some numerical results are presented to demonstrate the high efficiency and advantages of this new approach.  相似文献   

8.
An efficient numerical algorithm is developed for constructing self-similar isolated wave or switching wave solutions. The algorithm is developed for the well-known Kolmogorov–Petrovskii–Piskunov (KPP) problem, which has a switching-wave analytical solution, and is applied to construct an isolated traveling pulse in the four-component reaction–diffusion model.  相似文献   

9.
By constructing some suitable Lyapunov-type functionals and applying the theory of the definite-quadratic form, we obtain the stability of the zero solution of two classes of evolution equations with delays, including reaction–diffusion equations and damped wave equations. Our criteria depend on the derivatives of delays. Consequently, when the delays are constants, these criteria are independent of the magnitudes of the delays, so the delays are harmless for the stability of the zero solution.  相似文献   

10.
We investigate the conditional symmetry of a multidimensional nonlinear reaction–diffusion equation by its reduction to a radial equation. We construct exact solutions of this equation and infinite families of exact solutions for the corresponding one-dimensional diffusion equation.  相似文献   

11.
In this short paper, we investigate blow-up rate of solutions of reaction–diffusion equations with localized reactions. We prove that the solutions have a global blow-up and the rate of blow-up is uniform in all compact subsets of the domain.  相似文献   

12.
In the mutualism system with three species if the effects of dispersion and time delays are both taken into consideration, then the densities of the cooperating species are governed by a coupled system of reaction–diffusion equations with time delays. The aim of this paper is to investigate the asymptotic behavior of the time-dependent solution in relation to a positive uniform solution of the corresponding steady-state problem in a bounded domain with Neumann boundary condition, including the existence and uniqueness of a positive steady-state solution. A simple and easily verifiable condition is given to ensure the global asymptotic stability of the positive steady-state solution. This result leads to the permanence of the mutualism system, the instability of the trivial and all forms of semitrivial solutions, and the nonexistence of nonuniform steady-state solution. The condition for the global asymptotic stability is independent of diffusion and time-delays as well as the net birth rate of species, and the conclusions for the reaction–diffusion system are directly applicable to the corresponding ordinary differential system and 2-species cooperating reaction–diffusion systems. Our approach to the problem is based on inequality skill and the method of upper and lower solutions for a more general reaction–diffusion system. Finally, the numerical simulation is given to illustrate our results.  相似文献   

13.
Bifurcations of spatially nonhomogeneous periodic orbits and steady state solutions are rigorously proved for a reaction–diffusion system modeling predator–prey interaction. The existence of these patterned solutions shows the richness of the spatiotemporal dynamics such as oscillatory behavior and spatial patterns.  相似文献   

14.
The classical Lie approach and the method of additional generating conditions are applied to constructing multiparameter families of exact solutions of the generalized Fisher equation, which is a simplification of the known coupled reaction–diffusion system describing spatial segregation of interacting species. The exact solutions are applied to solving nonlinear boundary-value problems with zero Neumann conditions. A comparison of the analytic results and the corresponding numerical calculations shows the importance of the exact solutions obtained for the solution of the generalized Fisher equation.  相似文献   

15.
In this paper, we study the quenching phenomenon for a reaction–diffusion system with singular logarithmic source terms and positive Dirichlet boundary conditions. Some sufficient conditions for quenching of the solutions in finite time are obtained, and the blow-up of time-derivatives at the quenching point is verified. Furthermore, under appropriate hypotheses, the non-simultaneous quenching of the system is proved, and the estimates of quenching rate is given.  相似文献   

16.
This paper presents an extension of the fluid approximation of a PEPA model by augmenting with diffusion to take spatial information into account, which is described by a reaction–diffusion system with homogeneous Neumann boundary conditions. The existence and uniqueness of the solution are given, positivity and boundedness of the solution to the system are also established. Moreover, sufficient conditions for the convergence are discussed under different cases. Our results show that the action rates determine the behavior of positive solutions. Numerical simulations are presented to illustrate the analytical results.  相似文献   

17.
This paper is concerned with a two-species predator-prey reaction-diffusion system with Beddington-DeAngelis functional response and subject to homogeneous Neumann boundary conditions. By linearizing the system at the positive constant steady-state solution and analyzing the associated characteristic equation in detail, the asymptotic stability of the positive constant steady-state solution and the existence of local Hopf bifurcations are investigated. Also, it is shown that the appearance of the diffusion and homogeneous Neumann boundary conditions can lead to the appearance of codimension two Bagdanov-Takens bifurcation. Moreover, by applying the normal form theory and the center manifold reduction for partial differential equations (PDEs), the explicit algorithm determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions is given. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

18.
In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order α(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order β(0,1) and of order α(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.  相似文献   

19.
Approximating numerically the solutions of a reaction–diffusion system in an efficient manner requires the application of implicit methods, since the Courant–Friedrichs–Lewy condition on explicit methods imposes a time step of the order of the square of the space step. In this article, we review two types of strategies which are expected to yield reasonably precise solutions within a reasonable computing time. The first examines methods for solving the linear step necessary in any resolution procedure; estimates of CPU time in terms of the error are given in the non preconditioned and in the preconditioned case – provided that it is possible to define an efficient preconditioner. The second strategy is based on splitting, with or without extrapolation. The respective faults and qualities of both strategies are examined; they lead to a list of difficult analytical and numerical problems with possible hints as to their solution.  相似文献   

20.
The homogeneous balance method is extended and applied to a class of variable-coefficient reaction–duffing equations, and a Bäcklund transformation (BT) is obtained. Based on the BT, a nonlocal symmetry and several families of exact solutions of this equation are obtained, including soliton solutions that have important physical significance. The Fitzhugh–Nagumo and Chaffee–Infante equations are also considered as special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号