首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photocatalytic degradation of chlorophenols was evaluated under direct solar radiation using commercial ZnO catalyst. Effects of several parameters such as a catalyst loading, pH of solution and initial concentration on the degradation process have been investigated. The photocatalytic degradation efficiency of chlorophenols at the optimum value of the parameters was compared under similar experimental conditions. The results of efficiency and mineralization showed the degradation of 2-chlorophenol and 2,4-dichlorophenol compound with the first order kinetic rate and the rate constant decreases as the initial concentration of the chlorophenols increase. However, the rate constant was strongly affected by type of chlorophenols compound present either 2-chlorophenol or 2,4-dichlorophenol. The highest removal of chlorophenols was obtained after 120 min and the final intermediate compounds of chlorophenols degradation are lower molecular weight compound consisting of acetic acid which was analyzed through the HPLC.  相似文献   

2.
Hydroxyl radical reactions of selected chlorinated aromatic phenols (2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol) and chlorinated phenoxyacetic acids [2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-D methyl ester, 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP)] were studied using the radiolysis techniques of pulse radiolysis and gamma radiolysis. Hydroxyl radical addition was the prominent reaction pathway for the chlorinated phenoxyacetic acids and also for the chlorinated phenols at pH values below the pK(a) of the compounds. A very prominent change in (*)OH reactivity was observed with the chlorinated phenoxide ions in high pH solutions. Two different reaction pathways were clearly present between the hydroxyl radical and the chlorinated phenoxide ions. One of the reaction pathways was suppressed when the concentration of chlorinated phenoxide ions was increased 10-fold. Amid a greater electron-withdrawing presence on the aromatic ring (higher chlorinated phenoxide ions), the hydroxyl radical reacted preferably by way of addition to the aromatic ring. Steady-state experiments utilizing gamma radiolysis also showed a substantial decrease in oxidation with an increase in pH of substrate.  相似文献   

3.
The method of capillary electrophoresis was applied to separate and quantitatively determine herbicides belonging to the class of chlorophenoxycarboxylic acids: 2,4-dichlorophenoxyoleic, 2,4-dichlorophenoxypropionic, 2,4,5-trichlorophenoxyacetic, 2,4-dichlorophenoxyacetic, and phenoxyacetic, and the final product of their decomposition in an aqueous medium of 2,4-dichlorophenol. The influence exerted by - and - cyclodextrin on the selectivity of the separation system under study was analyzed. The hindering effect of humic acids on the separation and determination of phenoxycarboxylic acids by capillary electrophoresis was assessed.  相似文献   

4.
Chlorophenoxycarboxylic acid herbicides were separated and determined by capillary electrophoresis. An analysis of a six-component mixture containing 2,4-dichlorophenoxybutyric (2,4-DB), 2,4-dichlorophenoxypropionic (2,4-DP), 2,4,5-trichlorophenoxyacetic (2,4,5-T), 2,4-dichlorophenoxyacetic (2,4-D), and phenoxyacetic (PA) acids and 2,4-dichlorophenol (2,4-DCP), the product of their degradation in aqueous media, took no longer than 15 min. Solid-phase extraction on Diapak C-16 cartridges was used for sample preparation. The detection limits for herbicides in water samples with account for preconcentration (K = 250) were found to be 0.0005 mg/L for 2,4-DB, 2,4-DP, 2,4,5-T, and 2,4-D and 0.001 mg/L for PA. It was shown that humic acids (< 50 mg/L) do not interfere with the determination of chlorophenoxycarboxylic acids.  相似文献   

5.
Zhang LH  Zhang CJ  Chen X  Feng YQ  Wu XZ 《Electrophoresis》2006,27(16):3224-3232
A novel CE method combined with SPE in a single capillary was developed for analysis of chlorophenols in water. A frit of 0.5 mm was first made by a sol-gel method, followed by packing a SPE sorbent in the inlet end of the capillary. Two phenol derivatives, 2,4-dichlorophenol and 2,4,5-trichlorophenol, were used as the model compounds. By loading sample solutions into the capillary, the two chlorophenols were extracted into the sorbent. They were desorbed by injecting only about 4 nL of methanol. Finally, the analytes were separated by conventional CE. The technique provided a concentration enhancement factor of over 4000-fold for both chlorophenols. The detection limits (S/N = 3) of 2,4-dichlorophenol and 2,4,5-trichlorophenol were determined to be 0.1 ng/mL and 0.07 ng/mL, respectively. For replicate analyses of 5 ng/mL of 2,4-dichlorophenol, within-day and between-day RSDs of migration time, peak height and peak area were in the range of 1.8-2.0%, 4.0-4.4% and 4.1-4.6%, respectively. The method shows wide linear range, acceptable reproducibility and excellent sensitivity, and it was applied to the analyses of spiked river water samples. The capillary packed with the SPE sorbents can be used for more than 400 runs without performance deterioration.  相似文献   

6.
Infrared study of chlorophenols and products of their photodegradation   总被引:1,自引:0,他引:1  
Czaplicka M  Kaczmarczyk B 《Talanta》2006,70(5):940-949
The presents study of the 3-chlorophenol, 2,4-dichlorophenol, 2,3,4,5-tetrachlorophenol, pentachlorophenol and products of their photodegradation using FT-IR spectroscopy and GC/MS. Spectra of pure chlorophenols with the spectra of their solutions after photodegradation were compared. FT-IR spectra of pure chlorophenols investigated in the region of 3700–3000 cm−1 show that in particular cases the position and shape of bands corresponding to stretching vibration of hydroxyl groups are different. In all cases, the differences between spectra of pure chlorophenols and irradiated solutions were observed. It was confirmed that different distribution of types of hydrogen bonds appearing in particular chlorophenols has strong influence on the process of irradiation reaction and final products.  相似文献   

7.
The binding interactions of lysozyme with 2-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were investigated by UV-vis absorption, CD, fluorescence, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. The binding constants, quenching mechanism, and the number of binding sites were determined by the quenching of lysozyme fluorescence in presence of chlorophenols. H-bonds and hydrophobic interactions played major roles in stabilizing the chlorophenols-lysozyme complex. The distances r between chlorophenols and lysozyme were calculated to be 1.94nm, 2.75nm, 3.54nm, and 3.76nm for 2-CP, 2,4-DCP, 2,4,6-TCP, and PCP, respectively. The effects of chlorophenols on the conformation of lysozyme were analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.  相似文献   

8.
A static and exhaustive extraction mode of hollow fiber-supported liquid membrane was developed for field sample passive pretreatment of environmental water samples. The extraction device was prepared by immobilizing dihexyl ether in the wall of a polypropylene hollow fiber membrane (60 cm length, 50 μm wall thickness, and 280 μm id) as liquid membrane and filling the fiber lumen with 0.1 M NaOH as acceptor, and closing the two ends of the fiber with an aluminum foil. Passive extraction was conducted by immersing the device into 15 mL water samples modified with 0.01 M HCl and 20% m/v NaCl. Model analytes including 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol were transferred into acceptor with extraction efficiencies over 79% in 10 h at room temperature, and determined by high-performance liquid chromatography. The proposed method has the enrichment factor of 394-498 and LOD of 0.3-0.4 μg/L for the three chlorophenols. Humic acid and salinity in the environmentally relevant range had no significant influence on the extraction, and chlorophenols in various environmental waters were determined with spike recoveries between 71.6 and 120%. The static passive extraction nature benefited field sample pretreatment without power, whereas the exhaustive extraction mode effectively eliminated the sample matrix effects.  相似文献   

9.
In this study, a laccase LAC-Yang1 was successfully purified from a white-rot fungus strain Pleurotus ostreatus strain yang1 with high laccase activity. The enzymatic properties of LAC-Yang1 and its ability to degrade and detoxify chlorophenols such as 2,6-dichlorophenol and 2,3,6-trichlorophenol were systematically studied. LAC-Yang1 showed a strong tolerance to extremely acidic conditions and strong stability under strong alkaline conditions (pH 9–12). LAC-Yang1 also exhibited a strong tolerance to different inhibitors (EDTA, SDS), metal ions (Mn2+, Cu2+, Mg2+, Na+, K+, Zn2+, Al3+, Co2+, and metal ion mixtures), and organic solvents (glycerol, propylene glycol). LAC-Yang1 showed good stability in the presence of Mg2+, Mn2+, glycerol, and ethylene glycol. Our results reveal the strong degradation ability of this laccase for high concentrations of chlorophenols (especially 2,6-dichlorophenol) and chlorophenol mixtures (2,6-dichlorophenol + 2,3,6-trichlorophenol). LAC-Yang1 displayed a strong tolerance toward a variety of metal ions (Na2+, Zn2+, Mn2+, Mg2+, K+ and metal ion mixtures) and organic solvents (glycerol, ethylene glycol) in its degradation of 2,6-dichlorophenol and 2,3,6-trichlorophenol. The phytotoxicity of 2,6-dichlorophenol treated by LAC-Yang1 was significantly reduced or eliminated. LAC-Yang1 demonstrated a good detoxification effect on 2,6-dichlorophenol while degrading this compound. In conclusion, LAC-Yang1 purified from Pleurotus ostreatus has great application value and potential in environmental biotechnology, especially the efficient degradation and detoxification of chlorophenols.  相似文献   

10.
Baranowska I  Pieszko C 《The Analyst》2000,125(12):2335-2338
Derivative spectrophotometry (zero-crossing technique) was applied to the determination of selected phenols and herbicides in two-component mixtures. Methyl- and chlorophenols (3-methylphenol, 2,3- and 3,4-dimethylphenol, 2,5-, 2,6- and 3,4-dichlorophenol and 2,4,5-trichlorophenol) and triazine, uracil and urea herbicides (simazine, propazine, hexazinone, bromacil and metoxuron) were examined. The RSD values ranged between 0.05 and 4% and the recoveries obtained were between 97 and 110%. The developed derivative spectrophotometric method was also applied as a complementary technique for the separation of overlapping peaks of sample compounds obtained by HPLC with diode-array detection. Metoxuron and 3-methylphenol, metoxuron and 2,5-dichlorophenol and simazine and 2,6-dichlorophenol were determined simultaneously by this method at the level of 1 x 10(-3) g l-1.  相似文献   

11.
In this study, the choice of electrolyte systems for the separation and detection of a range of chlorophenoxyacetic acids and chlorophenols by means of capillary zone electrophoresis (CZE) is discussed. A series of acetate buffers over the buffering capacity pH range 4.03-5.5 were initially chosen for the separation. It was found that chlorophenoxyacetic acids could be separated at pH 4.03 and 4.5 but the most satisfactory separation of chlorophenols was obtained at pH 5.5. The factors affecting separation selectivity, including the addition of organic modifiers, was also studied. The use of 25% 2-butanol, 5% ethylene glycol and 10% acetonitrile as organic solvents resulted in the total separation of both classes of these compounds but poor peak shape of chlorophenols resulted and a number of chlorophenoxyacetic acids were not well separated. A borate-phosphate buffer gave improved peak shape of chlorophenols. Further improved separation of the components of the mixture was obtained by the addition of 2 mM fully methylated-beta-cyclodextrin to the 35 mM borate- 60 mM phosphate buffer at pH 6.5, maintaining good peak shape. In this case, separation of the two compound classes, chlorophenoxyacetic acids and chlorophenols, is achieved, with complete resolution of individual compounds in less than 5 min with high efficiency (of the order of 150,000 plates for the ca. 40 cm column). The method is applied to a commercial 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide mixture.  相似文献   

12.
Summary The efficiency and sensitivity of C18 reversed-phase adsorption of free chlorophenols and of n-hexane extraction of either free or acetylated chlorophenols from human urine were compared. All procedures were found to be efficient for the trace enrichment of 2,4-dichlorophenol, 2,4,6- and 2,4,5-trichlorophenols, 2,3,4,6- and 2,3,4,5-tetrachlorophenols and pentachlorophenol. The recoveries of chlorophenols from non-hydrolysed and acid hydrolysed urine samples were comparable. By treatment of 1 ml urine sample detection limits of 1–2 ng/ml were achieved, while the treatment of 5 ml samples enhanced the detection sensitivity to less than 1 ng/ml. The n-hexane extraction of acetylated chlorophenols from 1 ml urine samples is the simplest and fastest procedure because the acetylation and extraction of chlorophenols are performed simultaneously in one step. The C18 adsorption seems to be more suitable than n-hexane extraction for accumulation of chlorophenols from a urine volume of 5 ml and higher because the elution is performed always with the same small volume of acetone. Both C18 adsorption and n-hexane extraction procedures were applied for analysis of chlorophenols in general population and in persons with possible occupational exposure to organochlorine compounds.  相似文献   

13.
Transition Metal Chemistry - The chlorophenols (CPs), 4-chlorophenol (4-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP), are potent environmental hazards. They can be...  相似文献   

14.
The goal of this research was to investigate the formation and reactivity of charge-transfer complexes (CTCs) among a homologous series of chlorophenols on TiO2. We previously showed that 2,4,5-trichlorophenol (245TCP) forms a CTC with Degussa P25, a commercial preparation of TiO2. Here, we probe how light energy influences reactivity and product formation. Slurries of P25 containing 245TCP were irradiated at 360, 400, 430, 480, and 550 nm. At each wavelength, the amount of transformation of 245TCP correlates to the diffuse-reflectance absorbance of a 245TCP/P25 system, supporting the CTC as the cause of reaction. In addition, polymeric products are formed only under wavelengths that excite the CTC, indicating a different reaction mechanism for the CTC than for bandgap excitation of TiO2. We also found a higher quantum efficiency for CTC reactivity than for bandgap activation of the catalyst, suggesting that the photocatalytic efficiency and selectivity can be improved for certain compounds by designing catalytic materials that form CTCs with them. Furthermore, to determine how chlorine substitution patterns affected adsorption and sub-bandgap reactivity, P25 slurries containing phenol, 4-chlorophenol, 2,4-dichlorophenol, or 2,4,6-trichlorophenol were probed following dark contact or irradiation at 360, 430, or 550 nm. With respect to the extent of adsorption, complexation, reaction, and polymerization on P25, the behavior of 245TCP far exceeded that of the other chlorophenols. Among these chlorophenols, only 2,4-dichlorophenol produced a polymeric product. 245TCP is unique among this family of chlorophenols, which we attribute to a chlorine arrangement that leads to a favorable orbital overlap with TiO2 and sterically permits coupling reactions. Our results demonstrate the critical role that charge-transfer complexation can play in determining the rates and products of photocatalytic reactions.  相似文献   

15.
Raman spectra of phenoxyacetic acid and chlorine substituted phenoxyacetic acids viz., o-chlorophenoxyacetic acid, p-chlorophenoxyacetic acid and 2,6-dichlorophenoxyacetic acid have been analysed with the aid of abinitio theoretical calculations. The effect of chlorine substituents on the Raman spectra of phenoxyacetic acid have also been analysed by considering some important vibrational modes.  相似文献   

16.
A method is given for the separation and determination of eight chlorophenols using HPLC. The chlorophenols after extraction from aqueous solution by means of diethyl ether are taken up in a 1% methanol-petroleum spirit mixture and injected onto the column. Separation of a mixture of all eight chlorophenols can be achieved in 25 min and a linear relationship exists for each chlorophenol for concentrations in the range 0.1–1.0 ppm.  相似文献   

17.
A novel polymer membrane system consisting of interpenetrating network (IPN) of hydroxy terminated polybutadiene (HTPB) based polyurethane urea (PUU)–poly (methyl methacrylate) (PMMA) has been designed and developed as highly permselective membrane for pervaporation separation of toxic p-chlorophenol and 2,4-dichlorophenol from their dilute aqueous solutions. It was observed that 3 ppm 2,4-dichlorophenol in water could be reduced to 0.3 ppm 2,4-dichlorophenol using a PUU–PMMA IPN membrane of 28 cm2 area and 150 μm thickness. This membrane has shown high selectivity towards p-chlorophenol and 2,4-dichlorophenol at very low concentration in feed. Feed concentration of p-chlorophenol was varied from 1000 to 7000 ppm and that of 2,4-dichlorophenol was varied from 3 to 4000 ppm. Fifty seven percent 2,4-dichlorophenol in permeate was obtained from 3 ppm concentration in feed compared to 87% 2,4-dichlorophenol in permeate from 1000 ppm in feed. Pervaporation studies were carried out by varying the temperature of feed, membrane thickness and PMMA content in the membrane. The results of this investigation have revealed that these membranes would be suitable for separation of chlorophenols from industrial effluents.  相似文献   

18.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

19.
A hypercrosslinked polymeric adsorbent (ZH-03) for adsorbing and removing chlorophenolic compounds from their aqueous solutions was studied, including the static adsorption. The equilibrium adsorption data were fit to Freundlich adsorption isothermic models to evaluate the model parameters. Thermodynamic studies on the adsorption of chlorophenolic compounds on ZH-03 indicated that there were chemisorption transitions for 2,4,6-trichlorophenol and physical adsorption processes for 2-chlorophenol and 2,6-chlorophenol, and ZH-03 showed the homogeneous nature of the adsorbent surface. Column adsorption for chlorophenols wastewater shows the advantages of the ZH-03 adsorbent for adsorbing the following chlorophenolic compounds as 2-chlorophenol, 2,6-dichlorophenol and 2,4,6-trichlorophenol. Sodium hydroxide was used for desorpting chlorophenols from ZH-03 and showed excellent performance.  相似文献   

20.
In this study, the radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in aqueous solution was studied under various conditions as a function of irradiation dose in the absence and presence of hydrogen peroxide. The obtained data confirmed that largest yield of radiolytic degradation is obtained in oxidation processes/ionizing radiation, where oxidation is carried out with hydroxyl radicals. For complete degradation of 50?ppm 2,4-D, a required dose was lower in the presence of hydrogen peroxide. The formed major toxic phenolic intermediates were 2,4-dichlorophenol (2,4-DCP) and 4-chlorophenol (4-CP). The chemical analysis of the 2,4-D and the intermediates resulted from the radiolytic degradation were performed using a gas chromatography associated to mass spectrometry (GC?CMS) with ion trap dedector (ITD) and ion chromatography (IC). The formation of chlorophenols in addition to chloride, formaldehyde and carboxylic acids was studied as a function of absorbed dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号