首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sato S  Tanaka H 《Talanta》1989,36(3):391-394
A method has been developed for determination of germanium, based on complexation with mandelic acid and extraction of the ion-associate formed with Malachite Green (MG) into chlorobenzene. A weakly acidic aqueous solution (pH 2.5-3.5) at room temperature is used and indirect determination is achieved by measuring the absorbance of MG in the extract, at 628 mn. The calibration graph is linear over the range (0.17-8.63) x 10(-6) (0.05-2.50 mug of germanium); the apparent molar absorptivity is 1.33 x 10(5) 1.mole(-1).cm(-1). The interferences from Fe, Ti, Sn(IV), Mo, and SB(III) can be eliminated by addition of trans-1,2-diaminocyclohexanetetra-acetic acid and sodium diethyldithiocarbamate.  相似文献   

2.
Leong CL 《Talanta》1971,18(8):845-848
A ternary complex between germanium, Catechol Violet (CV) and cetyltrimethylanunoniuni bromide is proposed for the determination of germanium. The stoichiometric ratio Ge:CV is 1:2. Beer's law is obeyed from 0.1 to 1.0 ppm of Ge. The method is highly selective. Interference from Sn(IV), Fe(III), Bi(III), Cr(VI), Mo(VI), V(V) and Sb(III) in mg amounts is eliminated by extracting the germanium into carbon tetrachloride from 9M HC1 and then stripping into water before the photometric determination.  相似文献   

3.
Donaldson EM 《Talanta》1984,31(11):997-1004
A method for determining approximately 0.2 microg/g or more of germanium in ores, concentrates, zinc-processing products and related materials is described. The sample is decomposed by fusion with sodium peroxide and the cooled melt is dissolved in dilute sulphuric acid. Silica, if > 50 mg, is removed by volatilization with hydrofluoric acid. Germanium is separated from sodium salts by co-precipitation with hydrous ferric oxide, the precipitate is dissolved in 3M hydrochloric acid and germanium is subsequently separated from iron(III) and other co-precipitated elements by a single heptane extraction of germanium tetrachloride from approximately 9.4M hydrochloric acid. The extract is washed with 12M hydrochloric acid to remove residual iron(III), then germanium is stripped with water and determined spectrophotometrically with phenylfluorone in a 1.4M hydrochloric acid-0.002M cetyltrimethylammonium bromide medium in the presence of ascorbic acid as a reductant for co-extracted chlorine. The apparent molar absorptivity of the complex is 1.71 x 10(4) l.mole(-1).mm(-1) at 507 nm, the wavelength of maximum absorption. Up to 5 mg of tin(IV), 10 mg of antimony(V) and tungsten(VI) and approximately 50 mg of silica do not interfere. Germanium values are given for some Canadian certified reference ores, concentrates and iron-formation samples and for a metallurgical dust.  相似文献   

4.
Babich OA  Gould ES 《Inorganic chemistry》2000,39(18):4119-4122
Solutions 0.2-0.4 M in Ge(II) and 6 M in HCl, generated by reaction of Ge(IV) with H3PO2, are stable for more than 3 weeks and can be diluted 200-fold with dilute HCl to give GeCl3- preparations to be used in redox studies. Kinetic profiles for the reduction of Fe(III) by Ge(II), as catalyzed by Cu(II), implicate the odd-electron intermediate, Ge(III), which is formed from Cu(II) and Ge(II) (k = 30 M-1 s-1 in 0.5 M HCl at 24 degrees C) and which is consumed by reaction with Fe(III) (k = 6 x 10(2) M-1 s-1). A slower direct reaction between Ge(II) and Fe(III) (k = 0.66 M-1 s-1) can be detected in 1.0 M HCl. The reaction of Ge(II) with I3- in 0.01-0.50 M iodide is zero order in oxidant and appears to proceed via a rate-determining heterolysis of a Ge(II)-OH2 species (k = 0.045 s-1) which is subject to H(+)-catalysis. Reductions of IrCl6(2-) and PtCl6(2-) by Ge(II) are strongly Cl(-)-catalyzed. The Ir(IV) reaction proceeds through a pair of 1e- changes, of which the initial conversion to Ge(III) is rate-determining, whereas the Pt(IV) oxidant probably utilizes (at least in part) an inner-sphere PtIV-Cl-GeII bridge in which chlorine is transferred (as Cl+) from oxidant to reductant. The 2e- reagent, Ge(II), like its 5s2 counterpart, In(I), can partake in 1e- transactions, but requires more severe constraints: the coreagent must be more powerfully oxidizing and the reaction medium more halide-rich.  相似文献   

5.
A sensitive solid-phase extraction technique (SPE) for the enrichment of Fe(III), Co(II), Mn(II) and Cr(III) prior to atomic absorption spectrometric analysis is described. Escherichia coli immobilized on Amberlite XAD-4 was used as a solid-phase extractor. The effects of the pH, amount of solid-phase, eluent type and volume of the sample solution on the recovery of the metal ions were investigated. The effect of diverse ions was also investigated. The recoveries of Fe(III), Co(II), Mn(II) and Cr(III) under the optimum conditions were found to be 99 +/- 2, 99 +/- 3, 98 +/- 2, 98 +/- 3%, respectively, at the 95% confidence level. The detection limits of the metal ions were found as to be 2.4, 3.8, 1.3 and 1.7 ng ml(-1) for Fe(II), Co(II), Mn(II) and Cr(III) respectively, by applying a preconcentration factor of 25. The proposed enrichment method was applied to the determination of analytes in Atatürk Dam water samples, and alloy samples (RSD < 5%). The accuracy of the method was verified on certified alloy samples (NBS SRM 85b and NBS SRM 59a). The analytes were determined with a relative error lower than 5% in water and alloy samples.  相似文献   

6.
A method for the potentiometric determination of bromate by circulatory flow injection analysis (CFIA) is described. The procedure involves the use of an Fe(III)-Fe(II) potential buffer solution, which is recycled via a reservoir. The analytical method is based on a linear relationship between the concentration of bromate and a very transient potential change in the electrode potential due to the generation of intermediate bromine during the reaction of bromate with the Fe(III)-Fe(II) potential buffer solution, which also contains NaBr, (NH4)6Mo7O24 and H2SO4. An aliquot (5 microl) of a bromate sample solution was injected into the stream of the potential buffer solution, 100 ml of which was circulated at a flow rate of 1 ml/min; the potential buffer solution stream was then returned to the reservoir after passing through a flow-through redox electrode detector. A potential change due to the reaction of the injected sample with the potential buffer in a reaction coil was measured with the detector in the form of a peak signal. The effects of the bromide, sulfuric acid and Fe(III)-Fe(II) concentrations in the potential buffer, and length of the reaction coil on the peak heights were examined in order to optimize the proposed CFIA method. The analytical sensitivities to bromate were 5.6 mV/microM for 1 x 10(-2) M and 30.9 mV/microM for 1 x 10(-3) M in the concentration of Fe(III)-Fe(II) in a potential buffer solution containing 0.35 M NaBr, 0.2% (NH4)6Mo7O24 and 1 M H2SO4. The detection limit of bromate obtained by a 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution was 0.02 microM (2.5 ppb). The numbers of repetitive determinations in which the relative sensitivities within 5% were regarded as being tolerated were ca. 4000 and 2000 for the use of only 100 ml of 1 x 10(-2) M and 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution, respectively.  相似文献   

7.
The protonolysis reaction of the germanium(II) amide Ge[N(SiMe3)2]2 with calix[4]arene and calix[8]arene furnishes the two germanium(II) calixarene complexes {calix[4]}Ge2 and {calix[8]}Ge4, respectively, which have been crystallographically characterized. The calix[4]arene complex contains a Ge2O2 rhombus at the center of the molecule and is one of the only four germanium(II) calix[4]arenes that have been structurally characterized. The calix[8]arene species is the first reported germanium calix[8]arene complex, and it exhibits an overall bowl-shaped structure which contains two Ge2O2 fragments. The latter complex reacts with Fe2(CO)9 to yield an octairon compound, which has also been structurally characterized and contains four GeFe2 triangles arranged around the macrocyclic ring. The germanium(II) centers are oxidized to germanium(IV) in this process, with concomitant reduction of the neutral diiron species to Fe2(CO)(8)2- anions.  相似文献   

8.
Zusammenfassung Eine sehr empfindliche und selektive Methode zur spektrophotometrischen Bestimmung des Germaniums unter Verwendung von Brenzcatechinviolett wurde beschrieben. Vor der Bestimmung wird das Germanium zunächst durch Extraktion mit Tributylphosphat (TBP) und Kerosin angereichert und dann mit dem stark basischen Anionenaustauscher Dowex 1, X 8 in einer Mischung aus 30 Vol. %> TBP, 60 Vol. % Methylglykol und 10 Vol. % 12-n Salzsäure von den mitextrahierten, die Bestimmung störenden Elementen abgetrennt. Weiters wird gezeigt, daß sich diese Mischung gut eignet, um Uran quantitativ vom Germanium zu trennen. Die spektrophotometrische Bestimmung des Germaniums wird von V(V), Mo(VI), Ga(III), Tl(III), Sb(III), Sn(II) und Fe(III) gestört. Die Störung durch Eisen kann durch Zugabe von Natrium-Kaliumtartrat ausgeschaltet werden.
Anionic exchange separations of the elements that can be extracted with tributyl phosphat. II
Summary A very sensitive and selective method for the spectrophotometric determination of germanium has been described employing pyrocatechol violet. Prior to the determination, the germanium is first accumulated by extraction with tributyl phosphate (TBP) and kerosene and then separated from the co-extracted elements, that interfere with the determination, by means of the strongly basic anion-exchanger Dowex 1, X8 in a mixture consisting of 30 vol. % TBP, 60 vol. % methylglycol and 10 vol. % 12N hydrochloric acid. In addition it was shown that this mixture is well suited to separate uranium quantitatively from germanium. The spectrophotometric determination of germanium is interfered with by V(V), Mo(VI), Ga(III), Tl(III), Sb(III), Sn(II) and Fe(III). The interference by iron can be averted by adding sodium-potassium tartrate.
  相似文献   

9.
Kara D  Alkan M 《Talanta》2001,55(2):415-423
The synthesis and analytical applications of N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane (HBDAP) are described. This compound reacts with Fe(III) in the range of pH 3-6 to produce a red complex (2:3 mol ratio of Fe(III)/HBDAP) soluble in chloroform. The investigation included a study of the characteristics that are essential for solvent extraction and for spectrophotometric determination and speciation of iron. A highly sensitive, selective and rapid spectrophotometric method is described for the determination of trace amounts of iron(III) by HBDAP. The complex obeys Beer's law from 0.056 to 1.68 mg l(-1) with an optimum range. The detection limit (taken as three times the standard deviation of the reagent blank) is approximately 1.23x10(-7) M Fe(III) and the limit of quantitation (taken as ten times the standard deviation of the reagent blank) is about 4.11x10(-7) M Fe(III). A single extraction gave a good separation of iron(III) from iron(II). Good separation of Fe(III) from Ni(II), Fe(II), Co(II), Cd(II), Mn(II), Zn(II), Pb(II) was also achieved at pH 3-5.  相似文献   

10.
A simple back-extraction method was developed for the separation and preconcentration of trace levels of zinc from different matrices. Ethyl-2-(4-methoxybenzoyl)-3-(4-methoxyphenyl)-3-oxopropanoylcarbamate (EMPC) was used as a new complexing agent for the extraction of zinc(II) from the aqueous sample phase to the methyl isobutyl ketone (MIBK) phase as Zn(EMPC)2 complexes. The Zn(II) can be selectively stripped with 1?mL of 0.5?mol?L?1 HCl from Mn+(EMPC)n complexes [Ag(I), Al(III), Cd(II), Cr(III), Cu(II), Fe(II), Fe(III), Mn(II), Ni(II), Pb(II) and Pd(II)] which dissolved in MIBK phase. Some experimental parameters, which are important for the whole extraction process, including pH, sample volume, shaking time, amount of the EMPC reagent, amount of MIBK, ionic strength, and type of back-extractant were investigated. The recovery for Zn(II) was greater than 95%. The detection limit of the method was found to be 0.2?µg?L ? 1 and the relative standard deviation as 6.4%. The concentrations of Zn(II) in the certified reference materials (LGC6019 river water and NIST-1547 peach leaves) by the presented method were in good agreement with the certified values. The proposed method was succesfully applied to the determination of zinc in some natural waters, rice, hair, soil, and tea samples.  相似文献   

11.
Four factors are important in the reduction of germaniuin(IV) by hypophosphite, namely, proper acidity, temperature, proper concentration of complexing ligand, and time of heating. The complexing ligand is needed to stabilize the germaium(II) ions. Halides, with the exception of fluoride, and phosphate are good complexing ligands for germanium. Tin is quantitatively reduced and titrated under the same conditions. Many foreign ions do not interfere, so that prior separation of germanium can often be avoided. Successful results are presented for titrating germanium in the presence of many metals and for direct determination of germanium in actual samples. Germanium after reduction may be titrated with an iodate solution potentiometrically. The formal oxidation potentials of some germanium half-reactions were estimated and used to interpret the stabilization of germanium(II) by complex formation. Phosphoric acid is recommended as the reduction medium.  相似文献   

12.
Mesostructured germanium oxide has been well-synthesized by using a surfactant-templated approach under basic hydrothermal conditions. The cationic surfactant cetyltrimethylammonium bromide (CTAB) has formed nanotubes with uniform diameter of about 3.2 nm. Blanket-like morphology of the as-prepared sample has been observed with transmission electron microscopy (TEM). High-resolution TEM image reveals that the nanotubes are connected with inorganic germanium oxide and have self-assembled into periodic mesostructure. In-situ heating X-ray diffraction (XRD) patterns confirm that the germanium oxide is in amorphous phase in the temperature range from room temperature (RT) to 700 degrees C. In-situ heating small-angle X-ray scattering (SAXS) presents the mesostructural change with temperature. The local atomic structures around germanium atom have been obtained with in-situ heating X-ray adsorption fine structure (XAFS) techniques. The stability of this mesostructure has been determined to be correlated with the cationic surfactant CTAB. The structural evolution from the GeO 2/NaOH aqueous solution, the as-prepared sample to the sample heated at 700 degrees C, has been described, and the formation mechanism of mesostructured germanium oxide has been discussed.  相似文献   

13.
To examine possible models for the g = 2.006 resonance seen when the hydroxylated heme-heme oxygenase complex in the Fe(III) state is treated with CO, the reactivities of CO and reducing agents with (py)(2)Fe(III)(OEPO) and [Fe(III)(OEPO)](2) (OEPO is the trianion of octaethyl-meso-hydroxyporphyrin) have been examined. A pyridine solution of (py)(2)Fe(III)(OEPO) reacts in a matter of minutes with zinc amalgam (or with hydrazine) under an atmosphere of dioxygen-free dinitrogen to produce bright-red (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O, which has been isolated in crystalline form. The (1)H NMR spectrum of (py)(2)Fe(II)(OEPOH) in a pyridine-d(5) solution is indicative of the presence of a diamagnetic compound, and no EPR resonance was observed for this compound. Treatment of a solution of (py)(2)Fe(II)(OEPOH) in pyridine-d(5) with carbon monoxide produces spectral changes after a 30 s exposure that are indicative of the formation of diamagnetic (OC)(py)Fe(II)(OEPOH). Treatment of a green pyridine solution of (py)(2)Fe(III)(OEPO) with carbon monoxide reveals a slow color change to deep red over a 16 h period. Although a resonance at g = 2.006 was observed in the EPR spectrum of the sample during the reaction, the isolated product is EPR silent. The spectroscopic features of the final solution are identical to those of a solution formed by treating (py)(2)Fe(II)(OEPOH) with carbon monoxide. Addition of hydrazine to solutions of (OC)(py)Fe(II)(OEPOH) produces red, diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py in crystalline form. The X-ray crystal structures of (py)(2)Fe(II)(OEPOH).2py.0.33H(2)O and (OC)(N(2)H(4))Fe(II)(OEPOH).py have been determined. Solutions of diamagnetic (OC)(N(2)H(4))Fe(II)(OEPOH).py and (OC)(py)Fe(II)(OEPOH) are extremely air sensitive and are immediately converted in a pyridine solution into paramagnetic (py)(2)Fe(III)(OEPO) in the presence of dioxygen.  相似文献   

14.
A method has been developed for the simultaneous determination of traces of Fe(III) and Fe(II) in water by on-line coupling of spectrophotometry with flame atomic absorption spectrometry (FAAS). The method involves cloud-point extraction (CPE) of both species with ammonium pyrrolidinecarbodithioate (APDC) under standard conditions, which facilitates the in situ complexation and extraction of both species. Differentiation of the oxidation states of iron is achieved by using mathematical equations to overcome the interference of Fe(III) in the spectrophotometric determination of Fe(II) when they are both present in the same solution. In this manner the time-consuming and labor-intensive steps of preoxidation of Fe(II) or reduction of Fe(III) are eliminated. By preconcentrating a 10-mL sample solution detection limits as low as 7 microg L(-1), were obtained after a single-step extraction procedure. The relative standard deviation (n=4, 30 microg L(-1)) was 2.6 % and 1.8 % for spectrophotometry and FAAS, respectively. Recoveries in the range of 96-105 % were obtained by analysis of spiked real samples. The method was further verified by analyzing a certified reference material (IMEP-9); for this the recovery was 98.5 %.  相似文献   

15.
A simple and sensitive method for the determination of trace amounts of nickel(II) is described. The method is based on the adsorptive enrichment of nickel(II) as the complex with quinoxaline-2,3-dithiol using a finely divided anion-exchange resin, collection of the resin on a membrane filter by filtration, and direct measurement of the absorbance of the resultant circular thin layer by reflective spectrophotometry at 605 nm. In the presence of interfering cations such as copper(II) and cobalt(II) a sample solution is first filtered, after the addition of ammonium thiocyanate and Zephiramine, to extract these cations onto a membrane filter as the ion-pair precipitate formed between the metal-thiocyanate complex anions and Zephiramine cations, then nickel(II) in the filtrate is determined. Interferences from iron(III), silver(I), bismuth(III), cadmium(II), mercury(II), indium(III), palladium(II), platinum(IV), tin(IV), and zinc(II) can also be eliminated. The proposed method was applied to the determination of nickel in white wine. The concentrations of nickel found in 5-ml aliquots of 10 different wine samples were in the range 16.1-68.0 ng ml−1.  相似文献   

16.
A simple and rapid flow-injection (FI) method is reported for the simultaneous spectrophotometric determination of Fe(II) and Fe(III) in pharmaceutical products. The method is based on the reaction of Fe(II) with 2,2'-dipyridyl-2-pyridylhydrazone (DPPH) in acidic medium to form a water-soluble reddish complex (lambdamax=535 nm). Fe(III) reacts with DPPH under flow conditions only after its on-line reduction by ascorbic acid (AsA). Both analytes were determined in the same run via a double-injection valve, which enabled the simultaneous injection of two sample volumes in the same carrier stream (,,single-line double-injection" approach). The two well-defined peaks produced corresponded to total iron [Fe(II)+Fe(III)] and Fe(II). Speciation of the analytes in their mixtures was achieved by multiple regression analysis. The calibration curves obtained were linear over the ranges 0-30 and 0-50 mg L(-1) for Fe(II) and Fe(II), respectively, and the precision [s(r)=1.0% for Fe(II) and 1.5% for Fe(III)] was satisfactory. The method proved to be selective and adequately sensitive (cL=0.25 and 0.17 mg L(-1) for Fe(III) and Fe(II), respectively, in mixtures). Application of the method to the analysis of pharmaceutical samples resulted in excellent accuracy; the percent mean recoveries were in the range 99.0-102.0% for both Fe(II) and Fe(III) and the mean relative error was e(r)=1.0%.  相似文献   

17.
The thermal-induced changes in molecular magnets based on Prussian blue analogues, M(3)[Fe(CN)(6)](2).xH(2)O (M = Mn, Co, Ni, Cu, Zn, and Cd), were studied from infrared, X-ray diffraction, thermo-gravimetric, M?ssbauer, and magnetic data. Upon being heated, these materials loose the crystalline water that enhances the interaction between the metal centers, as has been detected from M?ssbauer spectroscopy data. At higher temperatures, a progressive decomposition process takes place, liberating CN(-) groups, which reduces the iron atom from Fe(III) to Fe(II) to form hexacyanoferrates(II). The exception corresponds to the cobalt compound that undergoes an inner charge transfer to form Co(III) hexacyanoferrate(II). In the case of zinc ferricyanide, the thermal decomposition is preceded by a structural transformation, from cubic to hexagonal. For M = Co, Ni, Cu, and Zn the intermediate reaction product corresponds to a solid solution of M(II) ferricyanide and ferrocyanide. For M = Mn and Cd the formation of a solid solution on heating was not detected. The crystal frameworks of the initial M(II) ferricyanide and of the formed M(II) ferrocyanide are quite different. In annealed Mn(II) ferricyanide samples, an increasing anti-ferromagnetic contribution on heating, which dominates on the initial ferrimagnetic order, was observed. Such a contribution was attributed to neighboring Mn(II) ions linked by aquo bridges. In the anhydrous annealed sample such interaction disappears. This effect was also studied in pure Mn(II) ferrocyanide. The occurrence of linkage isomerism and also the formation of Ni(III), Cu(III), and Zn(III) hexacyanoferrates(II) were discarded from the obtained experimental evidence.  相似文献   

18.
Yun J  Choi H 《Talanta》2000,52(5):893-902
1-Nitroso-2-naphthol, an excellent color-forming chelating agent, combines to Fe(III), Co(II), Ni(II), Cu(II) and so on to form slightly soluble complexes in aqueous solution. To determine these metal ions, a tedious and time consuming separation technique, such as liquid-liquid extraction, has often been performed. However, these metal-1-nitroso-2-naphthol complexes could be determined conveniently by ultraviolet-visible (UV-Vis) spectrophotometry in Tween 80 micellar medium that has polyoxyethylene groups. After conditions such as pH, the amount of 1-nitroso-2-naphthol and the stability were adjusted to their optimum values, the sensitivities of the metal ions in Tween 80 medium and in chloroform were compared. It was shown that the sensitivities of Fe(III) and Co(II) in Tween 80 medium were higher than in chloroform, but that of Cu(II) was lower. The interfering effects among analytes ions, Fe(III), Co(II), Ni(II) and Cu(II) were more serious than by other ions, but the interfering effects could be removed by adjusting pH or adding the masking agents such as NH(3) or oxalate. Detection limits of Fe(III), Co(II), Ni(II), and Cu(II) were 0.024, 0.016, 0.039 and 0.023 mug ml(-1), respectively, and the correlation coefficients of these calibration curves were above 0.996. Recovery yields of the metal ions in the mixed standard solution ranged from 96 to 103%, and their coefficients of variation were low ranging between 0.94 and 1.75%. Cu(II) in brass sample and the amount of Fe(III) in steel sample were also determined. This proposed technique is simple, convenient and speedy.  相似文献   

19.
Szczepaniak W  Ren M 《Talanta》1994,41(8):1393-1396
A liquid ion-exchange electrode containing a chloroform solution of the complex of Ln(III) (Gd, La) with tetraphenyl ester of imidodiphosphoric acid is described. The slope of the calibration graph (electrode potential vs concentration) is 18.5 mV/pLn in the pLn range 4.7-2 (pH = 5). Fe(III), Al(III), Co(II), Ni(II) and Ca(II) ions do not interfere, unlike ions of other lanthanides. It was found that the electrode might be applied to detect the end point of the titration of Ln(3+) ions.  相似文献   

20.
Gong B  Li X  Wang F  Chang X 《Talanta》2000,52(2):217-223
A novel spherical macroporous epoxy-dicyandiamide chelating resin is synthesized simply and rapidly from epoxy resin and use for the preconcentration and separation of trace Ga(III), In(III), Bi(III), Sn(IV), Pb(II), V(V) and Ti(IV) ions from solution samples. The analyzed ions can be quantitatively concentrated by the resin at flow rate of 3.0 ml min(-1) at pH 3, and can also be desorbed with 10 ml of 4 M HCl+0.2 g thiourea from the resin column with recoveries of 97-100%. The chelating resin is reused for eight times, the recoveries of these ions are still over 92%, and a 100-1000 times of excess of Fe(III), Al(III),Ca(II), Mg(III), Ni(II), Mn(II), Co(II), Cu(II), Zn(II), and Cd(II) cause no interference in the determination of these ions by inductively-coupled plasma atomic emission spectrometry. The capacities of the resin for the analytes are in the range of 0.66-4.20 mmol g(-1). The results show the relative standard deviation for the determination of 50.0 ng ml(-1) Ga(III), In(III), Bi(III), Sn(IV) and Pb(II), 5.0 ng ml(-1) V(V) and Ti(IV) are in the range of 1.2-4.0%. The recoveries of a standard added in real solution samples are between 96 and 100%, and the concentration of each ion in mineral sample detected by the method is in good agreement with the certified value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号