首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The infrared absorption spectrum of BrCN has been recorded in the re?ion 325–4720 cm?1 with a Bruker 120 HR interferometer. More than 30 000 lines have been measured and most of them have been assigned: 10734 lines for 151 bands and 10993 lines for 150 bands of 79Br12C14N and 81Br12C14N, respectively. Also new millimetre-wave spectra were measured for the vibrational excited states lying between 1000 cm?1 and 1400 cm-′. After a band by band analysis of these transitions, rovibrational global analyses have been performed for both isotopomers using all available experimental data. The rotational I-type resonance and the anharmonic resonance associated with kl22 are taken into account in one-step diagonalization procedures. Sets of 73 molecular parameters are obtained for both isotopomers. It is shown that the existing equilibrium structure is likely to be reliable. The vibrational dependence of the quartic centrifugal distortion constant is analysed for the linear triatomic molecules studied so far.  相似文献   

2.
The spectra of fluoroform (CF3H) in the solvents Ar, N2, and Xe have been obtained in the fundamental region (400–4000cm?1) using a low temperature cryostat and a Fourier transform infrared spectrophotometer. Ab initio calculations at the HF/6-31G? level have been performed to obtain the calculated vibrational frequencies of the isolated CF3H molecule and CF3H in the presence of the solvents (Ar, N2, and Xe). Comparison of the frequency shifts of CF2H in solution with respect to the gas phase frequencies is made for the experimental and theoretical results. Lorentzian functions were used to fit the bands and obtain the wavenumber at the peak absorbance and the vibrational band widths. An analysis of the dynamics of relaxation has been made based on the infrared time correlation functions for three of the fundamental modes (ν1, ν3, and ν4). Bandwidths, band moments, and relaxation times were obtained by appropriate fitting of the experimental correlation functions to theoretical models. In liquid argon, the temperature dependence of the second moment (M 2) indicates that rotational relaxation explains the bandwidth of the ν3 mode. For the ν4 mode, the temperature dependence of M 2 can be attributed to rotational relaxation if it is corrected with a Coriolis coupling term. The bandwidths of the ν1 mode do not follow the rotational relaxation model, and probably vibrational relaxation is the dominant mechanism.  相似文献   

3.
The absorption spectrum of 12C2H2 has been recorded by intracavity laser absorption spectroscopy (ICLAS) in the 10600–11 500 cm?1 spectral region, where no absorption bands were previously reported. Fifteen bands starting from the vibrational ground state are observed and rotationally analysed. All corresponding excited vibrational levels were assigned using the polyad model, the so-called cluster model (El Idrissi, M.I., Liévin, J., Campargue, A., and Herman, M., 1999, J. chem. Phys., 110, 2074) which allows vibrational energies, rotational Bv constants and, to some respect, relative band intensities to be predicted. Additional data and constants are also provided in the range 7600–9200cm?1, whenever improving the literature results, from spectra recorded previously at ULB using Fourier transform spectroscopy. The assignment procedure in the range recorded by ICLAS is detailed, leading to a deeper understanding of vibration-rotation and intensity features of the absorption bands within the frame of the cluster model.  相似文献   

4.
《Infrared physics》1989,29(2-4):551-560
In this paper, we report on a microcomputer-controlled spectrophotometer system employing a series of compact and high-radiant InGaAsP and InGaAs light emitting diodes (LEDs) which was newly designed and developed for high-resolution absorption measurement in laboratory and field uses in the NIR region of approximately 1.0–1.7μm. Some details of the design as well as operational procedure and performance for the automatic measurement were also described. Furthermore, using this NIR spectrophotometer system, the absorption spectra of C2H4 molecules in 1.6–1.7μm range were measured and analyzed. Some complex structure bands observed in 1.64–1.71μm were attributed to the overlapping of four combination bands. For absorption spectra identified to the binary combination band of v5 + v9 around 1.62 μm, with a nearly equal spacing between neighboring branches, the first assignment was provided, to our knowledge, and some of the vibrational and rotational constants for this combination band were also derived.  相似文献   

5.
The rotational spectrum of the absorption of the main isotope of sulfur dioxide (32S16O2), which corresponds to the terahertz range of electromagnetic waves, namely 1–250 cm?1 (0.1–10 THz), is studied. The consideration covers rotational transitions within all vibrational states whose Hamiltonian parameters are known from the literature: (000-000), (010-010), (100-100), (001-001), (020-020), (110-110), (011-011), (030-030), (120-120), (200-200), (002-002), (130-130), (103-103), (301-301), (101-101), (021-021), (210-210), (111-111), (201-201), (003-003), and (131-131). As a result, the absorption coefficient of 32S16O2 is calculated for a broad temperature range (300–1200 K) and the contribution of the rotational band of each vibrational state to the total absorption coefficient is evaluated.  相似文献   

6.
The rotational structure of the vibrational bands of 12C2H2 is investigated in three spectral energy regions not previously systematically explored at high resolution, 12800–13500 cm?1, 14000–15200 cm?1 and 16500–18360 cm?1, on the basis of new spectral data recorded by intracavity laser absorption spectroscopy. The rotational analysis of 17 new absorption bands arising from the ground state is reported (11 Σu + ? Σg + bands and 6Πu ? Σg + bands). Four bands in the range studied show strong perturbations affecting both the line positions and intensities. Their detailed analysis is performed in order to determine the nature of the coupling schemes, the vibrational species and the rotational constants of the perturber states. Altogether, the vibration-rotation parameters of 21 newly observed vibrational states are derived.  相似文献   

7.
Measurements of pressure shift and pressure broadening in molecular oxygen have been made for rotational transitions in the B (1←0) and γ (2←0) vibrational bands of the b1Σ+gX3Σg visible electronic transition. The absorption features were measured simultaneously in two cells by photoacoustic spectroscopy using a scanning dye laser. The measurements were made with background gases of both pure oxygen and air at room temperature. The pressure shifts were all negative. The measurements show the magnitude of the pressure shift increasing with vibrational quantum number when compared with existing data for the A (0←0) band. The shifts also increase with rotational number within each vibrational band. The shifts in air are larger than in oxygen although the difference gets smaller with vibrational number. The average shifts in air for the A, B, and γ bands were 36, 11, and 0.2% higher, respectively, than in pure oxygen. The pressure broadening of the rotational lines does not change significantly with vibrational number and in general decreases with rotational number within a band. The pressure shift measurements were used by the high-resolution Doppler imager (on the Upper Atmospheric Research Satellite) to correct the Doppler wind measurements.  相似文献   

8.
The coefficients γ of broadening by self-pressure, and pressure of nitrogen, oxygen, and air are calculated for absorption lines of the rotational band and for the ν2 band of the ozone molecule for temperatures 296, 252, and 212 K. The calculations are performed by the semiclassical method using rectilinear and exact trajectories for interacting molecules. It is shown that the experimental data obtained for the two bands at T = 296 K can be reconstructed better using different isotropic intermolecular interaction potentials. The experimental and calculated broadening coefficients of ozone absorption lines for the rotational band and for the ν2 and ν1 + ν3 vibrational bands were used to determine the parameters of an analytical model, which permits one to calculate γ in a wide range of rotational quantum numbers, 0 ≤ J ≤ 45, 0 ≤ K a ≤ 20, and temperatures of 200–296 K.  相似文献   

9.
Qualitatively different systems of molecular energy bands are studied on example of a parametric family of effective Hamiltonians describing rotational structure of triply degenerate vibrational state of a cubic symmetry molecule. The modification of band structure under variation of control parameters is associated with a topological invariant “delta-Chern”. This invariant is evaluated by using a local Hamiltonian for the control parameter values assigned at the boundary between adjacent parameter domains which correspond to qualitatively different band structures.  相似文献   

10.
The absorption spectrum of ethane was recorded at 0.014 cm?1 resolution in the range 4500–6500 cm?1 using a Fourier transform spectrometer and at room temperature. Eighteen bands could be identified and their type assigned. Upper state rotational constants are provided for the band at 5948.338 cm?1 and Coriolis constants are obtained for most perpendicular bands. Vibrational assignments are suggested for the bands at 5948 cm?1 (v7 + v10), 5914 cm?1(v8 + v 10+ v 11), and 5852cm?1 (v 5+v 10). All vibrational bands reported in the literature are gathered.  相似文献   

11.
Thirty four cold bands and 37 hot bands are reported from the high resolution FT absorption spectrum of 13CH12CH, all leading to vibrational states located between 3800 and 6750?cm?1. Each band has been vibrationally assigned and rotationally analysed. The band centres and rotational constants are listed.  相似文献   

12.
本文报道草酰氯C2O2Cl2在358—372.5nm范围的激光诱导荧光(LIF)激发谱。对60多条振动谱带进行了归属,其中24条是吸收光谱中没有的。由振动结构得到C2O2Cl2分子在X基态和?激发态的部分振动频率,其中v"7=84cm-1和v'7=164cm-1是新的数据。对401振动带的转动结构的分析给出转动常数A=0.190cm-1,B=0.114cm-1,C=0.048cm-1关键词:  相似文献   

13.
Using 0.002 cm−1 resolution Fourier transform absorption spectra of an 17O-enriched ozone sample, an extensive analysis of the ν3 band together with a partial identification of the ν1 band of the 17O16O17O isotopomer of ozone has been performed for the first time. As for other C2v-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3–16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers ν03) = 1030.0946 cm−1 and ν01) = 1086.7490 cm−1 were obtained for the ν3 and ν1 bands, respectively.  相似文献   

14.
Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O-enriched ozone sample, an extensive analysis of the nu(3) band together with a partial identification of the nu(1) band of the (17)O(16)O(17)O isotopomer of ozone has been performed for the first time. As for other C(2v)-type ozone isotopomers [J.-M. Flaud and R. Bacis, Spectrochim. Acta, Part A 54, 3-16 (1998)], the (001) rotational levels are involved in a Coriolis-type resonance with the levels of the (100) vibrational state. The experimental rotational levels of the (001) and (100) vibrational states have been satisfactorily reproduced using a Hamiltonian matrix which takes into account the observed rovibrational resonances. In this way precise vibrational energies and rotational and coupling constants were deduced and the following band centers nu(0)(nu(3)) = 1030.0946 cm(-1) and nu(0)(nu(1)) = 1086.7490 cm(-1) were obtained for the nu(3) and nu(1) bands, respectively. Copyright 2000 Academic Press.  相似文献   

15.
Infrared absorption spectra of the ν1 axial S-F stretching vibrational bands of sulfur tetrafluoride, SF4, have been recorded and analyzed. A diode-laser jet spectrometer was used to record high-resolution spectra of 32SF4, with 87 vibration-rotation lines of the ν1 fundamental being assigned. Least-squares fitting of the data yielded a precise vibrational band origin, as well as rotational parameters for the upper state. In addition, lower-resolution spectra of a static sample of SF4 held at room temperature were recorded using a Fourier transform (FTIR) spectrometer. The progressions of prominent features observed in the room-temperature FTIR spectra are attributed to summation bands arising from ν1 transitions from excited vibrational levels of the low-frequency ν4 manifold of both 32SF4 and 34SF4.  相似文献   

16.
The νHF absorption band shape of the H2O…HF complex is studied in the gas phase at a temperature of 293 K. The spectra of H2O/HF gaseous mixtures in the range 4000–3400 cm?1 are recorded at a resolution of 0.2–0.02 cm?1 with Bruker IFS-113v and Bruker IFS-120 HR vacuum Fourier spectrometers in a 20-cm cell. The spectra of the H2O…HF complex in the region of the ν1(HF) absorption band are obtained by subtracting the calculated spectra of free H2O and HF molecules from the experimental spectrum. The ν1 band of the H2O…HF complex has an asymmetric shape with a low-frequency head, an extended high-frequency wing, and a characteristic vibrational structure. Two approaches are used to calculate the ν1 band shape as a superposition of rovibrational bands of the fundamental and hot transitions involving the low-frequency modes of the complex. The first approach is based on a simplified semiempirical procedure. The second approach relies on a nonempirical anharmonic calculation of the vibrational energy levels, the frequencies and intensities of the corresponding transitions, and the rotational constants. These parameters are obtained by calculating ab initio the potential energy and dipole moment surfaces in the second-order Möller-Plesset approximation and using the variational method to solve one-, two-, and three-dimensional anharmonic vibrational problems. The absorption spectrum of the complex in the range 3600–3720 cm?1, reconstructed using the nonempirical electro-optical parameters, reproduces rather well the main features of the experimental spectrum, including the relative intensities of peaks of the vibrational structure. However, the interpretation of most of the structural features of the spectrum differs from that adopted in the semiempirical scheme. First of all, it follows from the results of nonempirical calculation that the central, most intense, maximum of the experimental spectrum should correspond to the v 1=1←0 transition from the ground vibrational state. This fact gives rise to a new value of the vibrational transition frequency ν 1 0 in the H2O…HF complex equal to 3635 cm?1, which is higher than the commonly accepted value of 3608 cm?1.  相似文献   

17.
A supersonic-free-jet infrared spectrometer has been constructed for investigation of molecular vibrational spectra at low rotational and vibrational temperatures. The sensitivity of measurement in a pulsed jet is increased by employing a phase-sensitive detection method synchronized with the pulse frequency. The performance of the spectrometer is examined for the absorption lines of the NH3 v 2 band. A rotational temperature as low as 16K is attained when seeded in He. Cold-jet spectra are demonstrated for thev 3 bands of PF5,34SF6, and182WF6.  相似文献   

18.
A method is presented for analyzing, in terms of sum rules, the intensity distribution among the vibronic bands in electronic spectra of polyatomic molecules, taking into account the rotation of the excited-state normal coordinates relative to those of the ground state (the Dushinsky effect). In the harmonic oscillator approximation, a quantitative criterion for the occurrence of the Dushinsky effect is obtained. The existence of this effect leads to non-product formulas for probabilities of the joint excitation of different vibrational modes. Expressions are obtained for the mean number of quanta excited in a given mode, and for its standard deviation, as well as for the correlation coefficients. The proposed method does not require a complete vibrational analysis of the spectrum of interest. As an example, the calculation of the correlation coefficient for the 3700-Å band system of the absorption spectrum of SO2 is given.  相似文献   

19.
张寅超  龚知本 《物理学报》1993,42(5):741-749
根据能级的实验数据,采用最小二乘法拟合得到水汽分子(202),(122)和(004)振动态的Watson的Hamiltonian常数值。利用这些常数值和修正的量子傅里叶变换(QFT)(即QFT*)方法,分别计算了水汽分子(202)带中已有实验数据的一些谱线的氮分子碰撞加宽线宽,以及(202),(122)和(004)带eR(1,1)支谱线的氮分子碰撞加宽线宽、及线宽的温度依赖关系。与实验结果比较表明,利用拟合方法求得的Hamiltonian常数值是合理的,而且QF 关键词:  相似文献   

20.
The 2v 2, v 1 and v 3 bands of H2 16O occurring in the region 2930–4255 cm-1 were studied from a spectrum recorded with a high resolution Fourier transform spectrometer (resolution: 0·005 cm-1). The set of the observed transitions leads by a least squares method to the determination of very accurate values of the rotational levels belonging to the vibrational states (000), (020), (100), (001). From these levels, using Watson's Hamiltonian, we have obtained respectively 21 and 17 rotational constants for the states (000) and (020).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号