首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability to construct size- and shape-controllable architectures using nanoparticles as building blocks is essential for the exploration of nanoparticle-structured properties. This paper reports findings of an investigation of a mediator-template strategy for the size-controllable assembly of nanoparticles. This strategy explores multidentate thioether ligands as molecular mediators and tetraalkylammonium-capped gold nanoparticles (5 nm) as templates toward the preparation of size-controllable and monodispersed spherical assemblies ( approximately 20-300-nm diameters). The combination of the mediation force of the multidentate thioether and the hydrophobic force of the tetraalkylammonium template establishes the interparticle linkage and stability. The morphological properties of the spherical assemblies have been characterized using TEM, AFM, and SAXS techniques. The finding of the soft-hard nature of the nanoparticle assemblies and their interactions with contacting substrates could form the basis of a new strategy for manipulating nanoscale linkages between nanoparticle assemblies, soldering nanoelectronics, and constructing nanosensor devices. The intriguing light scattering and optical absorption properties in response to assembly, disassembly, sizing, and interparticle spacing parameters have been characterized by dynamic light scattering and spectrophotometric measurements. The discovery of the controlled disassembly into individual nanoparticles and the size regulation by a third capping component could form the basis for applications in controlled drug delivery. The fundamental basis for the mediator-template strategy as a versatile assembly technique is further discussed in terms of experimental and theoretical correlations of the morphological and optical properties.  相似文献   

2.
A strategy for gold nanoparticle (AuNP) assembly driven by a dynamic DNA-fueled molecular machine is revealed here. In this machine, the aggregation of DNA-functionalized AuNPs is regulated by a series of toehold-mediated strand displacement reactions of DNA. The aggregation rate of the AuNPs can be regulated by controlling the amount of oligonucleotide catalyst. The versatility of the dynamic DNA-fueled molecular machine in the construction of two-component "OR" and "AND" logic gates has been demonstrated. This newly established strategy may find broad potential applications in terms of building up an "interface" that allows the combination of the strand displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, ultimately leading to the fabrication of a wide range of complex multicomponent devices and architectures.  相似文献   

3.
We report a simple and versatile self-assembly method for controlling the placement of functional gold nanoparticles on silicon substrates using micellar templates. The hierarchical positioning of gold nanoparticles is achieved in one-step during the spontaneous phase inversion of spherical poly(styrene)-block-poly(2-vinylpyridine) copolymer micelles into nanoring structures. The placement is mainly driven by the establishment of electrostatic interactions between the nanoparticle ligands and the pyridine groups exposed at the interface. In particular, we show the formation of ordered arrangements of single gold nanoparticles or nanoparticle clusters and demonstrate that their morphologies, densities and periodicities can be tuned by simply varying the initial block copolymer molecular weight or the deposition conditions. Besides gold nanoparticles, the method can be used for controlling the assembly of a large variety of nanoscale building blocks, thus opening an attractive pathway for generating functional hybrid surfaces with periodic nanopatterns.  相似文献   

4.
Spectra obtained by electrochemical infrared reflection absorption spectroscopy (EC-IRAS) for carbon monoxide (CO) adlayers formed by partial CO dosing on various ruthenium-decorated platinum nanoparticle films are reported. The need to achieve a well distributed rather than aggregated metal nanoparticle array is demonstrated, given that such nanoparticle aggregates induce complex dielectric behavior. The strategy here is to use an "organic glue matrix" (short chain SAMs) between the nanoparticles and the gold substrates. The observed promotion in CO electrooxidation by the existence of a Ru island on Pt nanoparticles, of interest to fuel-cell catalysis, showed a strong relationship with Ru surface concentrations, consistent with previous studies on single crystal or polycrystalline bimetallic surfaces. Two distinctive CO infrared bands, one for the Pt-CO and one for Ru-CO domain were found after the dipole coupling of CO within the two CO domains was minimized. Interestingly, those two CO bands showed independent electrooxidation behavior with electrode potential changes. Also, it is shown that the electrooxidation of CO on large Ru islands is less facile than on small Ru islands. In addition, the activity of commercial Pt/Ru alloy nanoparticles to CO stripping was tested and IRAS spectra were reported as a comparison to our Ru-decorated Pt nanoparticles.  相似文献   

5.
One-pot approach to couple the crystallization of CaCO(3) nanoparticles and the in situ symmetry-breaking assembly of these crystallites into hollow spherical shells was developed under the templating effect of a soluble starch. Further functional study using HP-a as an anticancer drug carrier (DOX) demonstrated its advantages for localizing drug release by the pH value-sensitive structure and enhancing cytotoxicity by increasing cellular uptake, perinuclear accumulation, and nuclear entry.  相似文献   

6.
A facile method has been developed to prepare aqueous dispersions of encapsulated conjugated polymer nanoparticles exhibiting high fluorescence brightness. Salient features of the nanoparticles include their small diameter and spherical morphology. Encapsulation of the nanoparticles with a silica shell reduces the rate of photooxidation and allows facile attachment of functional groups for subsequent bioconjugation and nanoparticle assembly. Functionalization of the nanoparticle with amine groups followed by the addition of Au nanoparticles resulted in the formation of nanoparticle assemblies, as evidenced by the efficient quenching of the conjugated polymer fluorescence by the Au nanoparticles.  相似文献   

7.
Left-handed gold nanoparticle double helices were prepared using a new method that allows simultaneous synthesis and assembly of discrete nanoparticles. This method involves coupling the processes of peptide self-assembly of and peptide-based biomineralization of nanoparticles. In this study, AYSSGAPPMPPF (PEPAu), an oligopeptide with an affinity for gold surfaces, was modified with an aliphatic tail to generate C12-PEPAu. In the presence of buffers and gold salts, amphiphilic C12-PEPAu was used to both control the formation of monodisperse gold nanoparticles and simultaneously direct their assembly into left-handed gold nanoparticle double helices. The gold nanoparticle double helices are highly regular, spatially complex, and they exemplify the utility of this methodology for rationally controlling the topology of nanoparticle superstructures and the stereochemical organization of discrete nanoparticles within these structures.  相似文献   

8.
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.  相似文献   

9.
The use of a thiol‐functionalized nonionic surfactant to stabilize spherical gold nanoparticles in water induces the spontaneous formation of polyrotaxanes at the nanoparticle surface in the presence of the macrocycle α‐cyclodextrin. Whereas using an excess of surfactant an amorphous gold nanocomposite is obtained, under controlled drying conditions the self‐assembly between the surface supramolecules provides large and homogenous supercrystals with hexagonal close packing of nanoparticles. Once formed, the self‐assembled supercrystals can be fully redispersed in water. The reversibility of the crystallization process may offer an excellent reusable material to prepare gold nanoparticle inks and optical sensors with the potential to be recovered after use.  相似文献   

10.
Designed peptide conjugates molecules are used to direct the synthesis and assembly of gold nanoparticles into complex 1D nanoparticle superstructures with various morphologies. Four peptide conjugates, each based on the gold‐binding peptide (AYSSGAPPMPPF; PEPAu), are prepared: C12H23O‐AYSSGAPPMPP ( 1 ), C12H23O‐AYSSGAPPMPPF ( 2 ), C12H23O‐AYSSGAPPMPPFF ( 3 ), and C12H23O‐AYSSGAPPMPPFFF ( 4 ). The affect that C‐terminal hydrophobic F residues have on both the soft‐assembly of the peptide conjugates and the resulting assembly of gold nanoparticle superstructures is examined. It is shown that the addition of two C‐terminal F residues ( 3 ) leads to thick, branched 1D gold nanoparticle superstructures, whereas the addition of three C‐terminal F residues ( 4 ) leads to bundling of thin 1D nanoparticle superstructures.  相似文献   

11.
The combination of high metal selectivity of DNAzymes with the strong distance-dependent optical properties of metallic nanoparticles has presented considerable opportunities for designing colorimetric sensors for metal ions. We previously communicated a design for a colorimetric lead sensor based on the assembly of gold nanoparticles by a Pb(2+)-dependent DNAzyme. However, heating to 50 degrees C followed by a cooling process of approximately 2 h was required to observe the color change. Herein we report a new improved design that allows fast (<10 min) detection of Pb(2+) at ambient temperature. This improvement of sensor performance is a result of detailed studies of the DNAzyme and nanoparticles, which identified "tail-to-tail" nanoparticle alignment, and large (42 nm diameter) nanoparticle size as the major determining factors in allowing fast color changes. The optimal conditions for other factors such as temperature (35 degrees C) and concentrations of the DNAzyme (2 microM), its substrate (3 nM), and NaCl (300 mM) have also been determined. These results demonstrate that fundamental understanding of the DNAzyme biochemistry and nanoparticle science can lead to dramatically improved colorimetric sensors.  相似文献   

12.
This paper demonstrates a novel facile method for fabrication of patterned arrays of gold nanoparticles on Si/SiO2 by combining electron beam lithography and self-assembly techniques. Our strategy is to use direct-write electron beam patterning to convert nitro functionality in self-assembled monolayers of 3-(4-nitrophenoxy)-propyltrimethoxysilane to amino functionality, forming chemically well-defined surface architectures on the 100 nm scale. These nanopatterns are employed to guide the assembly of citrate-passivated gold nanoparticles according to their different affinities for amino and nitro groups. This kind of nanoparticle assembly offers an attractive new option for nanoparticle patterning a silicon surface, as relevant, for example, to biosensors, electronics, and optical devices.  相似文献   

13.
A novel strategy for efficient immobilization of electroactive Thionine(Th)on the gold(Au)electrode surface based on calcium carbonate-gold nanoparticles(CaCO3-AuNPs)inorganic hybrid composite was proposed and conducted by the strong electrostatic interaction between positively charged Th and negatively charged CaCO3-AuNPs composite.The hybrid composite was obtained by the adsorption of AuNPs onto the surface of CaCO3 microspheres through electrostatic interaction.Due to the microporous architecture,large s...  相似文献   

14.
Integral equation theory with a hybrid closure approximation is employed to study the equilibrium structure of highly size asymmetric mixtures of spherical colloids and nanoparticles. Nonequilibrium contact aggregation and bridging gel formation is also qualitatively discussed. The effect of size asymmetry, nanoparticle volume fraction and charge, and the spatial range, strength, and functional form of colloid-nanoparticle and colloid-colloid attractions in determining the potential-of-mean force (PMF) between the large spheres is systematically explored. For hard, neutral particles with weak colloid-nanoparticle attraction qualitatively distinct forms of the PMF are predicted: (i) a contact depletion attraction, (ii) a repulsive form associated with thermodynamically stable "nanoparticle haloing," and (iii) repulsive at contact but with a strong and tight bridging minimum. As the interfacial cohesion strengthens and becomes shorter range the PMF acquires a deep and tight bridging minimum. At sufficiently high nanoparticle volume fractions, a repulsive barrier then emerges which can provide kinetic stabilization. The charging of nanoparticles can greatly reduce the volume fractions where significant changes of the PMF occur. For direct and interfacial van der Waals attractions, the large qualitative consequences of changing the absolute magnitude of nanoparticle and colloid diameters at fixed size asymmetry ratio are also studied. The theoretical results are compared with recent experimental and simulation studies. Calculations of the real and Fourier space mixture structure at nonzero colloid volume fractions reveal complex spatial reorganization of the nanoparticles due to many body correlations.  相似文献   

15.
The sequential layer by layer self‐assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large‐scale highly ordered metal nano­arrays prepared from solvent annealed thin films of polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle–substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self‐assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle–substrate interaction and nanoparticle–polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer.

  相似文献   


16.
We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles.  相似文献   

17.
The ability to construct three- and two-dimensional architectures via nanoscale engineering is important for emerging applications of nanotechnology in sensors, catalysis, controlled drug delivery, microelectronics, and medical diagnostics. In this paper, we report novel 3D assembly using multidentate molecular building blocks. It is demonstrated that the interparticle linking of gold nanoparticles (3.7 nm core size) by a tetradentate thioether, tetra[(methylthio)methyl]silane, leads to the formation of a spherical assembly. The spherical size (30-80 nm diameter) is dependent on reaction time and relative ratio of the building blocks. The novelty of this approach is the viability of multidentate thioethers to link nanoparticles and produce spherical assemblies that can be readily assembled and disassembled. The spherical assembly can also be partially "melted" depending on the nature of interfacial interactions between the assembly and the substrate. These unusual morphological properties in shape and surface interaction and the intriguing assembling-disassembling capabilities may form the basis of designing and fabricating novel functional nanostructures.  相似文献   

18.
Self‐assembly of nanomaterials to yield a wide diversity of high‐order structures, materials, and devices promises new opportunities for various technological applications. Herein, we report that crack formation can be effectively harnessed by elaborately restricting the drying of colloidal suspension using a flow‐enabled self‐assembly (FESA) strategy to yield large‐area periodic cracks (i.e., microchannels) with tunable spacing. These uniform microchannels can be utilized as a template to guide the assembly of Au nanoparticles, forming intriguing nanoparticle threads. This strategy is simple and convenient. As such, it opens the possibility for large‐scale manufacturing of crack‐based or crack‐derived assemblies and materials for use in optics, electronics, optoelectronics, photonics, magnetic device, nanotechnology, and biotechnology.  相似文献   

19.
In this paper, we describe a unique strategy for preparing discrete composite nanoparticles consisting of a large gold core (60-150 nm in diameter) surrounded by a thermally responsive nontoxic hydrogel polymer derived from the polymerization of N-isopropylacrylamide (NIPAM) or a mixture of NIPAM and acrylic acid. We synthesize these composite nanoparticles at room temperature by inducing the growth of gold nanoparticles in the presence of preformed spherical hydrogel particles. This new method allows precise control of the size of the encapsulated gold cores (tunable between 60 and 150 nm) and affords composite nanoparticles possessing diameters ranging from as small as 200 nm to as large as 550 nm. Variable-temperature studies show that the hydrodynamic diameter of these composite nanoparticles shrinks dramatically when the temperature is increased above the lower critical solution temperature (LCST); correspondingly, when the temperature is lowered below the LCST, the hydrodynamic diameter expands to its original size. These composite nanoparticles are being targeted for use as optically modulated drug-delivery vehicles that undergo volume changes upon exposure to light absorbed by the gold nanoparticle core.  相似文献   

20.
The understanding of kinetic and thermodynamic factors governing the assembly of nanoparticles is important for the design and control of functional nanostructures. This paper describes a study of the kinetic and thermodynamic factors governing the mediator-template assembly of gold nanoparticles into spherical assemblies in solutions. The study is based on spectrophotometric measurements of the surface plasmon (SP) resonance optical property. Gold nanoparticle cores ( approximately 5 nm) encapsulated with tetraoctylammonium bromide shells were studied as a model system. The mediator-template assembly involves a thioether-based multidentate ligand (e.g., MeSi(CH2SMe)3) which functions as a mediator, whereas the tetraoctylammonium bromide capping molecules function as template agents. On the basis of the temperature dependence of the SP optical property in the mediator-template assembly process, the kinetic and thermodynamic parameters such as the reaction rate constant and reaction enthalpy have been determined. The results led to two important findings. First, the mediator-template assembly of nanoparticles is an enthalpy-driven process. Second, the enthalpy change (-1.3 kcal/mol) is close to the magnitude of the van der Waals interaction energy for alkyl chains and the condensation energy of hydrocarbons. Implications of the findings to the understanding of the interparticle interactions have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号