首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electronic structures of quaternary pnictides ZrCuSiPn (Pn=P, As) were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge spectroscopy (XANES). Shifts in the core-line XPS and the XANES spectra indicate that the Zr and Cu atoms are cationic, whereas the Si and Pn atoms are anionic, consistent with expectations from simple bonding models. The Cu 2p XPS and Cu L-edge XANES spectra support the presence of Cu1+. The small magnitudes of the energy shifts in the XPS spectra suggest significant covalent character in the Zr-Si, Zr-Pn, and Cu-Pn bonds. On progressing from ZrCuSiP to ZrCuSiAs, the Si atoms remain largely unaffected, as indicated by the absence of shifts in the Si 2p3/2 binding energy and the Si L-edge absorption energy, while the charge transfer from metal to Pn atoms becomes less pronounced, as indicated by shifts in the Cu K-edge and Zr K, L-edge absorption energies. The transition from two-dimensional character in LaNiAsO to three-dimensional character in ZrCuSiAs proceeds through the development of Si-Si bonds within the [ZrSi] layer and Zr-As bonds between the [ZrSi] and [CuAs] layers.  相似文献   

2.
The physical and chemical properties of bulk Ce(1-x)Tb(x)O(2) and Ce(1-x)Tb(x)O(y) nanoparticles (xTb exchange nor the introduction of oxygen vacancies in Ce(1-x)Tb(x)O(y) significantly affect the charge on the Ce cations. In contrast, the O K-edge and Tb L(III)-edge XANES spectra for Ce(1-x)Tb(x)O(y) nanoparticles show substantial changes with respect to the corresponding spectra of Ce and Tb single oxide references. The Ce(0.5)Tb(0.5)O(y) compounds exhibit a much larger Tb(3+)/Tb(4+) ratio than TbO(1.7). A comparison with the properties of Ce(1-x)Zr(x)O(y) and Ce(1-x)Ca(x)O(y) shows important differences in the charge distribution, the magnitude of the dopant induced strain in the oxide lattice, and a superior behavior in the case of the Ce(1-x)Tb(x)O(y) systems. The Tb-containing oxides combine stability at high temperature against phase segregation and a reasonable concentration of O vacancies, making them attractive for chemical and catalytic applications.  相似文献   

3.
We have searched for new species of small oxygen-containing gas-phase dianions produced in a secondary ion mass spectrometer by Cs+ ion bombardment of solid samples with simultaneous exposure of their surfaces to O2 gas. The targets were a pure zinc metal foil, a copper-contaminated zinc-based coin, two silicon-germanium samples (Si(1-x)Ge(x)(with x= 6.5% or 27%)) and a piece of titanium metal. The novel dianions Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-) have been observed at half-integer m/z values in the negative ion mass spectra. The heptamer dianions Zn3O(4)(2-) and Ti2O(5)(2-) have been unambiguously identified by their isotopic abundances. Their flight times through the mass spectrometer are approximately 20 micros and approximately 17 micros, respectively. The geometrical structures of the two heptamer dianions Ti2O(5)(2-), and Zn3O(4)(2-) are investigated using ab initio methods, and the identified isomers are compared to those of the novel Ge2O(5)(2-) and the known Si2O(5)(2-) and Be3O(4)(2-) dianions.  相似文献   

4.
Individual compounds and solid solutions are obtained under hydrothermal conditions in the Bi(2)O(3)-SiO(2)-MnO(2) system in the form of faceted crystals and epitaxial films on the Bi(24)Si(2)O(40) substrate. The crystals have the shape of a cube (for the molar ratio of the starting components Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O > 1), a tetrahedron (for Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O < 1), or a tetrahedron-cube combination (for Na(2)SiO(3)·9H(2)O:Mn(NO(3))(2)·6H(2)O = 1). Crystal-chemical analysis based on the data of single-crystal and powder X-ray diffraction, IR spectra, and the results of calculation of the local balance by the bond-valence method reveals formation of the Bi(24)(Si(4+),Mn(4+))(2)O(40) phases, which probably include Mn(5+) ions (epitaxial films), as well as the Bi(24)(Si(4+),Bi(3+),Mn(4+))(2)O(40) and Bi(24)(Si(4+),Mn(4+))(2)O(40) phases in the (1 - x)Bi(3+)(24)Si(4+)(2)O(40) - x(Bi(3+)(24)Mn(4+)(2)O(40)) system and the Bi(24)(Bi(3+),Mn(4+))(2)O(40) phase in the (1 - x)Bi(3+)(24)Bi(3+)(2)(O(39)?(1)) - x(Bi(3+)(24)Mn(4+)(2)O(40)) system. Precision X-ray diffraction studies of single crystals of the Bi(24)(Bi,Si,Mn)(2)O(40) general composition show that these sillenites crystallize in space group P23 and not I23 as the Bi(24)Si(2)O(40) phase. The dissymmetrization of sillenite phases is observed for the first time. It is explained by a kinetic (growth) phase transition of the order-disorder type due to population of a crystallographic site by atoms with different crystal-chemical properties and quasi-equilibrium conditions of crystal growth in the course of a hydrothermal synthesis below 400 °C at unequal molar amounts of the starting components in the batch.  相似文献   

5.
ZrO(2)-doped TiO(2) hollow nanospheres with anatase phase are efficiently fabricated via functionalized negatively charged polystyrene (PS) spheres without any surfactant or polyelectrolyte. The resulting Ti(1-)(x)Zr(x)O(2) (hereafter denoted as TZ) hollow nanospheres are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), Laser Raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF), nitrogen sorption, and UV-vis diffuse reflectance spectroscopy (UV-vis). The Zr(4+) incorporation decreases the anatase crystallite size, increases the specific surface area, and changes the pore size distribution. Furthermore, it induces enrichment of electron charge density around Ti(4+) ions and blueshift of absorption edges. The TZ hollow nanospheres doped with moderate ZrO(2) (molar ratio, Ti:Zr=10:1) exhibit better photocatalytic activity than the other samples for the degradation of rhodamine B in aqueous solution, which is correlated with the effect of Zr(4+) doping on the physicochemical properties in terms of surface structures, phase structures, and the electronic structures.  相似文献   

6.
[Zr(OPr(i))(4)·Pr(i)OH] reacts with [HOSi(O(t)Bu)(3)] in anhydrous benzene in 1:1 and 1:2 molar ratios to afford alkoxy zirconosiloxane precursors of the types [Zr(OPr(i))(3){OSi(O(t)Bu)(3)}] (A) and [Zr(OPr(i))(2){OSi(O(t)Bu)(3)}(2)] (B), respectively. Further reactions of A or B with glycols in 1:1 molar ratio afforded six chemically modified precursors of the types [Zr(OPr(i))(OGO){OSi(O(t)Bu)(3)}] (1A-3A) and [Zr(OGO){OSi(O(t)Bu)(3)}(2)] (1B-3B), respectively [where G = (-CH(2)-)(2) (1A, 1B); (-CH(2)-)(3) (2A, 2B) and (-CH(2)CH(2)CH(CH(3)-)} (3A, 3B)]. The precursors A and B are viscous liquids, which solidify on ageing whereas the other products are all solids, soluble in common organic solvents. These were characterized by elemental analyses, molecular weight measurements, FAB mass, FTIR, (1)H, (13)C and (29)Si-NMR studies. Cryoscopic molecular weight measurements of all the products, as well as the FAB mass studies of 3A and 3B, indicate their monomeric nature. However, FAB mass spectrum of the solidified B suggests that it exists in dimeric form. Single crystal structure analysis of [Zr{OSi(O(t)Bu)(3)}(4)(H(2)O)(2)]·2H(2)O (3b) (R(fac) = 11.9%) as well as that of corresponding better quality crystals of [Ti(O(t)Bu){OSi(O(t)Bu)(3)}(3)] (4) (R(fac) = 5.97%) indicate the presence of a M-O-Si bond. TG analyses of 3A, B, and 3B indicate the formation of zirconia-silica materials of the type ZrO(2)·SiO(2) from 3A and ZrO(2)·2SiO(2) from B or 3B at low decomposition temperatures (≤200 °C). The desired homogenous nano-sized zirconia-silica materials [ZrO(2)·nSiO(2)] have been obtained easily from the precursors A and B as well as from the glycol modified precursors 3A and 3B by hydrolytic sol-gel process in organic media without using any acid or base catalyst, and these were characterized by powder XRD patterns, SEM images, EDX analyses and IR spectroscopy.  相似文献   

7.
Tasi JM  Tu PT  Chan TS  Lii KH 《Inorganic chemistry》2008,47(23):11223-11227
A new niobium(V) silicate, Rb(2)(Nb(2)O(4))(Si(2)O(6)).H(2)O, has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, and solid-state NMR spectroscopy. It crystallizes in the tetragonal space group P4(3)22 (No. 95) with a = 7.3431(2) A, c = 38.911(3) A, and Z = 8. Its structure contains tetrameric units of the composition Nb(4)O(18), which share corners to form a layer of niobium oxide. The Nb-O layer is a slice of the pyrochlore structure. Neighboring Nb-O layers are linked by vierer single-ring silicates generating eight-ring and six-ring channels running parallel to <100> directions, in which the Rb(+) cations and water molecules reside. The tantalum analogue was prepared and characterized by powder X-ray diffraction. Upon heating to 500 degrees C, Rb(2)(Nb(2)O(4))(Si(2)O(6)).H(2)O loses lattice water molecules, while the framework structure is retained to give the anhydrous compound Rb(2)(Nb(2)O(4))(Si(2)O(6)), whose structure was also characterized by single-crystal X-ray diffraction. The dehydrated sample absorbs water reversibly, as indicated by powder X-ray diffraction. Rb(2)(Nb(2)O(4))(Si(2)O(6)) crystallizes in the tetragonal space group I4(1) (No. 80) with a = 10.2395(6) A, c = 38.832(3) A, and Z = 16.  相似文献   

8.
The model catalysts of ZrO(2)-supported Au nanoparticles have been prepared by deposition of Au atoms onto the surfaces of thin ZrO(2) films with different morphologies. The adsorption and thermal stability of Au nanoparticles on thin ZrO(2) films have been investigated using synchrotron radiation photoemission spectroscopy (SRPES) and X-ray photoelectron spectroscopy (XPS). The thin ZrO(2) films were prepared by two different methods, giving rise to different morphologies. The first method utilized wet chemical impregnation to synthesize the thin ZrO(2) film through the procedure of first spin-coating a zirconium ethoxide (Zr(OC(2)H(5))(4)) precursor onto a SiO(2)/Si(100) substrate at room temperature followed by calcination at 773 K for 12 h. Scanning electron microscopy (SEM) investigations indicate that highly porous "sponge-like nanostructures" were obtained in this case. The second method was epitaxial growth of a ZrO(2)(111) film through vacuum evaporation of Zr metal onto Pt(111) in 1 × 10(-6) Torr of oxygen at 550 K followed by annealing at 1000 K. The structural analysis with low energy electron diffraction (LEED) of this film exhibits good long-range ordering. It has been found that Au forms smaller particles on the porous ZrO(2) film as compared to those on the ordered ZrO(2)(111) film at a given coverage. Thermal annealing experiments demonstrate that Au particles are more thermally stable on the porous ZrO(2) surface than on the ZrO(2)(111) surface, although on both surfaces, Au particles experience significant sintering at elevated temperatures. In addition, by annealing the surfaces to 1100 K, Au particles desorb completely from ZrO(2)(111) but not from porous ZrO(2). The enhanced thermal stability for Au on porous ZrO(2) can be attributed to the stronger interaction of the adsorbed Au with the defects and the hindered migration or coalescence resulting from the porous structures.  相似文献   

9.
采用溶胶-凝胶法制备了Zr0.5Ti0.5O2固溶体薄膜,通过X-射线衍射分析(XRD)、扫描电镜分析(SEM)、紫外吸收光谱(UV-Vis)和X射线光电子能谱(XPS)等方式对材料进行了表征。结果表明实验制得的材料Zr:Ti=1:1,薄膜表面平整、致密、光滑,皲裂情况较单纯的TiO2和ZrO2薄膜有明显改进;另外由于Zr的掺入,薄膜在紫外光波段有良好的吸收,吸收边较TiO2薄膜有明显的蓝移。通过标准的光刻剥离技术和磁控溅射技术在Zr0.5Ti0.5O2纳米薄膜上制作了叉指型的金属电极。在5V偏压下,样品对可见光不吸收,对260 nm的紫外光有明显的光电响应,光电流与暗电流之比近3个数量级。  相似文献   

10.
Atomic force microscopy probe-induced large-area ultrathin SiO(x) (x ≡ O/Si content ratio and x > 2) protrusions only a few nanometers high on a SiO(2) layer were characterized by scanning photoemission microscopy (SPEM) and X-ray photoemission spectroscopy (XPS). SPEM images of the large-area ultrathin SiO(x) protrusions directly showed the surface chemical distribution and chemical state specifications. The peak intensity ratios of the XPS spectra of the large-area ultrathin SiO(x) protrusions provided the elemental quantification of the Si 2p core levels and Si oxidation states (such as the Si(4+), Si(3+), Si(2+), and Si(1+) species). The O/Si content ratio (x) was evidently determined by the height of the large-area ultrathin SiO(x) protrusions.  相似文献   

11.
Glass-ceramic composite materials have been investigated for nuclear waste sequestration applications due to their ability to incorporate large amounts of radioactive waste elements. A key property that needs to be understood when developing nuclear waste sequestration materials is how the structure of the material responds to radioactive decay of nuclear waste elements, which can be simulated by high energy ion implantation. Borosilicate glass-ceramic composites containing brannerite-type (CeTi2O6) or zirconolite-type (CaZrTi2O7) oxides were synthesized at different annealing temperatures and investigated after being implanted with high-energy Au ions to mimic radiation induced structural damage. Backscattered electron (BSE) images were collected to investigate the interaction of the brannerite crystallites with the glass matrix before and after implantation and showed that the morphology of the crystallites in the composite materials were not affected by radiation damage. Surface sensitive Ti K-edge glancing angle XANES spectra collected from the implanted composite materials showed that the structures of the CeTi2O6 and CaZrTi2O7 ceramics were damaged as a result of implantation; however, analysis of Si L2,3-edge XANES spectra indicated that the glass matrix was not affected by ion implantation.  相似文献   

12.
Nanocrystalline Ce(1)(-)(x)Ti(x)O(2) (0 < or = x < or = 0.4) and Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2)(-)(delta) (x = 0.15, y = 0.01, 0.02) solid solutions crystallizing in fluorite structure have been prepared by a single step solution combustion method. Temperature programmed reduction and XPS study of Ce(1)(-)(x)Ti(x)O(2) (x = 0.0-04) show complete reduction of Ti(4+) to Ti(3+) and reduction of approximately 20% Ce(4+) to Ce(3+) state compared to 8% Ce(4+) to Ce(3+) in the case of pure CeO(2) below 675 degrees C. The substitution of Ti ions in CeO(2) enhances the reducibility of CeO(2). Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) crystallizes in fluorite structure and Pt is ionically substituted with 2+ and 4+ oxidation states. The H/Pt atomic ratio at 30 degrees C over Ce(0.84)Ti(0.15)Pt(0.01)O(2)(-)(delta) is 5 and that over Ce(0.99)Pt(0.01)O(2)(-)(delta) is 4 against just 0.078 for 8 nm Pt metal particles. Carbon monoxide and hydrocarbon oxidation activity are much higher over Ce(1-)(x)(-)(y)Ti(x)Pt(y)O(2) (x = 0.15, y = 0.01, 0.02) compared to Ce(1)(-)(x)Pt(x)O(2) (x = 0.01, 0.02). Synergistic involvement of Pt(2+)/Pt degrees and Ti(4+)/Ti(3+) redox couples in addition to Ce(4+)/Ce(3+) due to the overlap of Pt(5d), Ti(3d), and Ce(4f) bands near E(F) is shown to be responsible for improved redox property and higher catalytic activity.  相似文献   

13.
Amorphous titanium hydroxyphosphate with formula Ti(OH)(1.36)(HPO(4))(1.32).2.3H(2)O and a new silica-modified titanium hydroxyphosphate with a general formula Ti(OH)(2x)(HPO(4))(2-x).ySiO(2).nH(2)O are synthesized and characterized using IR, TG, XRD, SEM, solid-state NMR, and BET techniques. It is concluded that SiO(2) is evenly distributed within the titanium phosphate (TiP) agglomerates and that neither the separate silica phase nor the titanium silicates are formed during the synthesis of silica-modified titanium hydroxyphosphate. Correlations between the texture, ion-exchange properties of the amorphous titanium hydroxyphosphate, and the amount of SiO(2) present within the TiP matrix are established. Sorption properties of silica-modified titanium hydroxyphosphate toward Cs(+) and Sr(2+) are studied in a series of samples with an increasing amount of silica, at different pH, and in NaCl solutions with a varying ionic strength. It is found that sorption of Cs(+) does not depend practically on the amount of SiO(2) present, whereas the Sr(2+) uptake drastically decreases with an increase of silica amount. The effects of pH and of the electrolyte concentration on the sorption behavior of titanium phosphate are discussed in terms of ionic hydration shell and titanium phosphate structural specificity. The kinetics of sorption processes is also investigated, and the diffusion coefficients for cesium and strontium are obtained.  相似文献   

14.
Two Np(5+) silicates, Li(6)(NpO(2))(4)(H(2)Si(2)O(7))(HSiO(4))(2)(H(2)O)(4) (LiNpSi1) and K(3)(NpO(2))(3)(SiO(3)OH)(2) (KNpSi1), were synthesized by hydrothermal methods. The crystal structures were determined using direct methods and refined on the basis of F(2) for all unique data collected with Mo Kalpha radation and an APEX II CCD detector. LiNpSi1 crystallizes in orthorhombic space group Pnma with a =13.189(6) A, b = 7.917(3) A, c = 10.708(5) A, V = 1118.1(8) A3, and Z = 2. KNpSi1 is hexagonal, P62m, a = 9.734(1) A, c = 3.8817(7) A, V = 318.50(8) A3, and Z = 1. LiNpSi1 contains chains of edge-sharing neptunyl pentagonal bipyramids linked into two-dimensional sheets through direct linkages between the neptunyl polyhedra and the vertex sharing of the silicate tetrahedra. The structure contains both sorosilicate and nesosilicate units, resulting in a new complex neptunyl silicate sheet. KNpSi1 contains edge-sharing neptunyl square bipyramids linked into a framework structure through the sharing of vertices with the silicate tetrahedra. The neptunyl silicate framework contains channels approximately 6.0 A in diameter. These structures exhibit significant departures from other reported Np(5+) and U(6+) compounds and represent the first reported Np(5+) silicate structures.  相似文献   

15.
Fang Y  Ritter C  White T 《Inorganic chemistry》2011,50(24):12641-12650
Fluor-chlorellestadite solid solutions Ca(10)(SiO(4))(3)(SO(4))(3)Cl(2-x)F(x), serving as prototype crystalline matrices for the fixation of hazardous fly ash, were synthesized and characterized by powder X-ray and neutron diffraction (PXRD and PND), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). The lattice parameters of the ellestadites vary linearly with composition and show the expected shrinkage of unit cell volume as fluorine (IR = 1.33 ?) displaces chlorine (IR = 1.81 ?). FTIR spectra indicate little or no OH(-) in the solid solutions. All compositions conform to P6(3)/m symmetry where F(-) is located at the 2a (0, 0, (1)/(4)) position, while Cl(-) is displaced out of the 6h Ca(2) triangle plane and occupies 4e (0, 0, z) split positions with z ranging from 0.336(3) to 0.4315(3). Si/S randomly occupy the 6h tetrahedral site. Ellestadites rich in Cl (x ≤ 1.2) show an overall deficiency in halogens (<2 atom per formula unit), particularly Cl as a result of CaCl(2) volatilization, with charge balance achieved by the creation of Ca vacancies (Ca(2+) + 2Cl(-) →□(Ca) + 2□(Cl)) leading to the formula Ca(10-y)(SiO(4))(3)(SO(4))(3)Cl(2-x-2y)F(x). For F-rich compositions the vacancies are found at Ca(2), while for Cl-rich ellestadites, vacancies are at Ca(1). It is likely the loss of CaCl(2) which leads tunnel anion vacancies promotes intertunnel positional disorder, preventing the formation of a P2(1)/b monoclinic dimorph, analogous to that reported for Ca(10)(PO(4))(6)Cl(2). Trends in structure with composition were analyzed using crystal-chemical parameters, whose systematic variations served to validate the quality of the Rietveld refinements.  相似文献   

16.
以二甲基二乙氧基硅烷为硅源,在水溶液中成功制备了SiO2修饰纳米ZrO2颗粒;利用透射电子显微镜、热重分析仪、X射线衍射仪、红外光谱仪分析了样品的形貌和结构;将SiO2/ZrO2与α-Al2O3制成陶瓷材料,考察了其机械性能.结果表明,所制备的SiO2/ZrO2晶粒均一,直径约为10nm,硅原子在SiO2/ZrO2中以Si―O―Zr键合形式存在,SiO2不影响ZrO2的晶型.引入SiO2使得ZrO2晶粒细化、尺寸均匀性提高;SiO2/ZrO2/Al2O3陶瓷气孔率小,具有致密的显微结构和优异的机械性能.  相似文献   

17.
A series of novel vanadium silicates with open-framework and microporous structures has been synthesized under mild hydrothermal conditions. Ten distinct framework types have been identified that all have structures based on cross-linking single silicate sheets with square pyramidal V(IV)O(5) units to give compounds with the general formula A(r)[(VO)(s)(Si(2)O(5))(p)(SiO(2))(q)].tH(2)O, where A is Na, K, Rb, Cs, or a combination. The vanadosilicate (VSH-n) structures have free channel diameters up to 6.5 A and show good thermal stability, absorption, and ion-exchange properties, suggesting their potential for technological applications as molecular sieves or in catalysis.  相似文献   

18.
Environmental behavior of iodine is of great importance especially related to the release of radioiodine from the processing of nuclear fuel, nuclear accidents, etc. To understand the fate of radioactive iodine in soil-water systems, it is necessary to establish a speciation method of iodine in soil. XANES is one of the most important candidates and we compared the performance of L(III)-edge and K-edge XANES for this purpose. In particular, fluorescence XANES with a multi-element semiconductor detector is essential for the measurement of XANES spectra for trace amounts of iodine in natural soil samples. When comparing L(III)- and K-edges, L(III)-edge XANES can be useful for the speciation due to its ability to distinguish various iodine species in their XANES spectra. However, at L(III)-edge measuring iodine L(alpha) emission, the proximity of its energy to those of Ca K(alpha) and K(beta1) causes a large contribution of background X-rays in the XANES spectra, since Ca is a major element in soil. Thus, it was concluded that K-edge XANES is more useful than L(III)-edge for the speciation of iodine in natural soils owing to its lower detection limit. The K-edge XANES was successfully applied to the speciation of natural iodine in a soil sample (iodine concentration: 55.8 mg/kg), showing that iodine is present in the sample as organo-iodine species incorporated in humic substances.  相似文献   

19.
The new mercury vanadium phosphate hydrate Hg(4)(-)(x)()O(1)(-)(y)()(VO)(PO(4))(2).H(2)O has been synthesized under hydrothermal conditions. X-ray investigations led to orthorhombic symmetry, space group P2(1)2(1)2(1) (No. 19), a = 6.3632(2) A, b = 12.4155(5) A, c = 14.2292(6) A, Z = 4. The crystal structure was solved and refined from single-crystal diffractometer data to residuals R[F(2) > 2sigmaF(2)] = 0.039, R(w)(F(2)) = 0.055. The VPO framework consists of infinite one-dimensional [VO(PO(4))(2)]( infinity ) chains with corner-connected VO(6) octahedra and PO(4) tetrahedra. The chains run along the [100] direction and are held together by the unprecedented tetrahedral cationic units [Hg(4)(-)(x)()O(1)(-)(y)()](4+). Presence of Hg-Hg bonding contacts is proved from theoretical calculations.  相似文献   

20.
29Si chemical shift anisotropy (CSA) data have been determined from (29)Si MAS NMR spectra recorded at 14.1 T for a number of synthetic calcium silicates and calcium silicate hydrates. These are beta- and gamma-Ca(2)SiO(4), Ca(3)SiO(4)Cl(2), alpha-dicalcium silicate hydrate (alpha-Ca(2)(SiO(3)OH)OH), rankinite (Ca(3)Si(2)O(7)), cuspidine (Ca(4)Si(2)O(7)F(2)), wollastonite (beta-Ca(3)Si(3)O(9)), pseudowollastonite (alpha-Ca(3)Si(3)O(9)), scawtite (Ca(7)(Si(6)O(18))CO(3).2H(2)O), hillebrandite (Ca(2)SiO(3)(OH)(2)), and xonotlite (Ca(6)Si(6)O(17)(OH)(2)). The (29)Si MAS NMR spectra of rankinite and wollastonite clearly resolve manifolds of spinning sidebands from two and three Si sites, respectively, allowing the CSA parameters to be obtained with high precision for each site. For the (29)Si Q(1) sites in rankinite and cuspidine, the CSA asymmetry parameters (eta(sigma) approximately 0.6) contrast the general expectation that sorosilicates should possess small eta(sigma) values as a result of the nearly axially symmetric environments of the SiO(4) tetrahedra. The (29)Si CSA parameters provide an improved insight into the electronic and geometric environments for the SiO(4) tetrahedra as compared to the values solely for the isotropic chemical shift. It is shown that the shift anisotropy (delta(sigma)) and the CSA asymmetry parameter (eta(sigma)) allow a clear distinction of the different types of condensation of SiO(4) tetrahedra in calcium silicates. This relationship may in general be valid for neso-, soro-, and inosilicates. The CSA data determined in this work may form a valuable basis for (29)Si MAS NMR studies of the structures for tobermorites and calcium silicate hydrate phases resulting from hydration of Portland cements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号