首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Throughout the drug discovery process, discovery teams are compelled to use statistics for making decisions using data from a variety of inputs. For instance, teams are asked to prioritize compounds for subsequent stages of the drug discovery process, given results from multiple screens. To assist in the prioritization process, we propose a desirability function to account for a priori scientific knowledge; compounds can then be prioritized based on their desirability scores. In addition to identifying existing desirable compounds, teams often use prior knowledge to suggest new, potentially promising compounds to be created in the laboratory. Because the chemistry space to search can be dauntingly large, we propose the sequential elimination of level combinations (SELC) method for identifying new optimal compounds. We illustrate this method on a combinatorial chemistry example.  相似文献   

2.
High throughput in vitro microsomal stability assays are widely used in drug discovery as an indicator for in vivo stability, which affects pharmacokinetics. This is based on in-depth research involving a limited number of model drug-like compounds that are cleared predominantly by cytochrome P450 metabolism. However, drug discovery compounds are often not drug-like, are assessed with high throughput assays, and have many potential uncharacterized in vivo clearance mechanisms. Therefore, it is important to determine the correlation between high throughput in vitro microsomal stability data and abbreviated discovery in vivo pharmacokinetics study data for a set of drug discovery compounds in order to have evidence for how the in vitro assay can be reliably applied by discovery teams for making critical decisions. In this study the relationship between in vitro single time point high throughput microsomal stability and in vivo clearance from abbreviated drug discovery pharmacokinetics studies was examined using 306 real world drug discovery compounds. The results showed that in vitro Phase I microsomal stability t(1/2) is significantly correlated to in vivo clearance with a p-value<0.001. For compounds with low in vitro rat microsomal stability (t(1/2)<15 min), 87% showed high clearance in vivo (CL>25 mL/min/kg). This demonstrates that high throughput microsomal stability data are very effective in identifying compounds with significant clearance liabilities in vivo. For compounds with high in vitro rat microsomal stability (t(1/2)>15 min), no significant differentiation was observed between high and low clearance compounds. This is likely owing to other clearance pathways, in addition to cytochrome P450 metabolism that enhances in vivo clearance. This finding supports the strategy used by medicinal chemists and drug discovery teams of applying the in vitro data to triage compounds for in vivo PK and efficacy studies and guide structural modification to improve metabolic stability. When in vitro and in vivo data are both available for a compound, potential in vivo clearance pathways can be diagnosed to guide further discovery studies.  相似文献   

3.
Drug discovery teams continuously have to decide which compounds to progress and which experiments to perform next, but the data required to make informed decisions is often scattered, inaccessible, or inconsistent. In particular, data tend to be stored and represented in a compound-centric or assay-centric manner rather than project-centric as often needed for effective use in drug discovery teams. The Integrated Project Views (IPV) system has been created to fill this gap; it integrates and consolidates data from various sources in a project-oriented manner. Its automatic gathering and updating of project data not only ensures that the information is comprehensive and available on a timely basis, but also improves the data consistency. Due to the lack of suitable off-the-shelf solutions, we were prompted to develop custom functionality and algorithms geared specifically to our drug discovery decision making process. In 10 years of usage, the resulting IPV application has become very well-accepted and appreciated, which is perhaps best evidenced by the observation that standalone Excel spreadsheets are largely eliminated from project team meetings.  相似文献   

4.
The pharmaceutical industry remains solely reliant on synthetic chemistry methodology to prepare compounds for small-molecule drug discovery programmes. The importance of the physicochemical properties of these molecules in determining their success in drug development is now well understood but we present here data suggesting that much synthetic methodology is unintentionally predisposed to producing molecules with poorer drug-like properties. This bias may have ramifications to the early hit- and lead-finding phases of the drug discovery process when larger numbers of compounds from array techniques are prepared. To address this issue we describe for the first time the concept of lead-oriented synthesis and the opportunity for its adoption to increase the range and quality of molecules used to develop new medicines.  相似文献   

5.
A fundamental component for success in drug discovery is the ability to assemble and screen compounds that encompass a broad swath of biologically relevant chemical‐diversity space. Achieving this goal in a natural‐products‐based setting requires access to a wide range of biologically diverse specimens. For this reason, we introduced a crowdsourcing program in which citizen scientists furnish soil samples from which new microbial isolates are procured. Illustrating the strength of this approach, we obtained a unique fungal metabolite, maximiscin, from a crowdsourced Alaskan soil sample. Maximiscin, which exhibits a putative combination of polyketide synthase (PKS), non‐ribosomal peptide synthetase (NRPS), and shikimate pathway components, was identified as an inhibitor of UACC‐62 melanoma cells (LC50=0.93 μM ). The metabolite also exhibited efficacy in a xenograft mouse model. These results underscore the value of building cooperative relationships between research teams and citizen scientists to enrich drug discovery efforts.  相似文献   

6.
The high level of attrition of drugs in clinical development has led pharmaceutical companies to increase the efficiency of their lead identification and development through techniques such as combinatorial chemistry and high-throughput (HTP) screening. Since the major reasons for clinical drug candidate failure other than efficacy are pharmacokinetics and toxicity, attention has been focused on assessing properties such as metabolic stability, drug-drug interactions (DDI), and absorption earlier in the drug discovery process. Animal studies are simply too labor-intensive and expensive to use for evaluating every hit, so it has been necessary to develop and implement higher throughput in vitro ADME screens to manage the large number of compounds of interest. The antimalarial drug development program at the Walter Reed Army Institute of Research, Division of Experimental Therapeutics (WRAIR/ET) has adopted this paradigm in its search for a long-term prophylactic for the prevention of malaria. The overarching goal of this program is to develop new, long half-life, orally bioavailable compounds with potent intrinsic activity against liver- and blood-stage parasites. From the WRAIR HTP antimalarial screen, numerous compounds are regularly identified with potent activity. These hits are now immediately evaluated using a panel of in vitro ADME screens to identify and predict compounds that will meet our specific treatment criteria. In this review, the WRAIR ADME screening program for antimalarial drugs is described as well as how we have implemented it to predict the ADME properties of small molecule for the identification of promising drug candidates.  相似文献   

7.
8.
Drug design is a multi-parameter task present in the analysis of experimental data for synthesized compounds and in the prediction of new compounds with desired properties. This article describes the implementation of a binned scoring and composite ranking scheme for 11 experimental parameters that were identified as key drivers in the MC4R project. The composite ranking scheme was implemented in an AstraZeneca tool for analysis of project data, thereby providing an immediate re-ranking as new experimental data was added. The automated ranking also highlighted compounds overlooked by the project team. The successful implementation of a composite ranking on experimental data led to the development of an equivalent virtual score, which was based on Free-Wilson models of the parameters from the experimental ranking. The individual Free-Wilson models showed good to high predictive power with a correlation coefficient between 0.45 and 0.97 based on the external test set. The virtual ranking adds value to the selection of compounds for synthesis but error propagation must be controlled. The experimental ranking approach adds significant value, is parameter independent and can be tuned and applied to any drug discovery project.  相似文献   

9.
The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.  相似文献   

10.
Drug metabolism can have profound effects on the pharmacological and toxicological profile of therapeutic agents. In the pharmaceutical industry, many in vitro techniques are in place or under development to screen and optimize compounds for favorable metabolic properties in the drug discovery phase. These in vitro technologies are meant to address important issues such as: (1) is the compound a potent inhibitor of drug metabolising enzymes (DMEs)? (2) does the compound induce the expression of DMEs? (3) how labile is the compound to metabolic degradation? (4) which specific enzyme(s) is responsible for the compound's biotransformation? and (5) to which metabolites is the compound metabolized? Answers to these questions provide a basis for judging whether a compound is likely to have acceptable pharmacokinetic properties in vivo. To address these issues on the increasing number of compounds inundating the drug discovery programs, high throughput assays are essential. A combination of biochemical advances in the understanding of the function and regulation of DMEs (in particular, cytochromes P450, CYPs) and automated analytical technologies are revolutionizing drug metabolism research. Automated LC-MS based metabolic stability, fluorescence, radiometric and LC-MS based CYP inhibition assays are now in routine use. Automatible models for studying CYP induction based on enzyme activity, quantitative RT-PCR and reporter gene systems are being developed. We will review the utility and limitations of these HTS approaches and highlight on-going developments and emerging technologies to answer metabolism questions at the different stages of the drug discovery process.  相似文献   

11.
High-throughput ADME screening for compound drug development properties has become an essential part of the modern drug discovery process, allowing more informed decisions to be made on the best compounds to take forward in the discovery/development process. This however is a time-consuming process requiring multiple tests to be performed, demanding a significant amount of liquid chromatography/mass spectrometry (LC/MS) instrument time. This article focuses on the use of sub-2 microm porous particle LC coupled to tandem quadrupole MS/MS mass spectrometry for the rapid screening of ADME properties. Using this approach analysis times from 30 s to 1 min were achievable allowing analysis times to be cut by 80%. The use of the small particles coupled to high flow rates allowed for sufficient resolution, even with very short analysis time, to resolve the analytes of interest from similar compounds that would interfere with the assay. The use of dedicated, intelligent, software packages allowed for the user-free generation of MS/MS conditions and the processing of the data.  相似文献   

12.
Recent progress in combinatorial chemistry and parallel synthesis has radically changed the approach to drug discovery in the pharmaceutical industry. At present, thousands of compounds can be made in a short period, creating a need for fast and effective in silico methods to select the most promising lead candidates. Decision forest is a novel pattern recognition method, which combines the results of multiple distinct but comparable decision tree models to reach a consensus prediction. In this article, a decision forest model was developed using a structurally diverse training data set containing 232 compounds whose estrogen receptor binding activity was tested at the U.S. Food and Drug Administration (FDA)'s National Center for Toxicological Research (NCTR). The model was subsequently validated using a test data set of 463 compounds selected from the literature, and then applied to a large data set with 57,145 compounds as a screening example. The results show that the decision forest method is a fast, reliable and effective in silico approach, which could be useful in drug discovery.  相似文献   

13.
Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).  相似文献   

14.
15.
Quantitative structure–activity relationships (QSAR) methods are urgently needed for predicting ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties to select lead compounds for optimization at the early stage of drug discovery, and to screen drug candidates for clinical trials. Use of suitable QSAR models ultimately results in lesser time-cost and lower attrition rate during drug discovery and development. In the case of ADME/T parameters, drug metabolism is a key determinant of metabolic stability, drug–drug interactions, and drug toxicity. QSAR models for predicting drug metabolism have undergone significant advances recently. However, most of the models used lack sufficient interpretability and offer poor predictability for novel drugs. In this review, we describe some considerations to be taken into account by QSAR for modeling drug metabolism, such as the accuracy/consistency of the entire data set, representation and diversity of the training and test sets, and variable selection. We also describe some novel statistical techniques (ensemble methods, multivariate adaptive regression splines and graph machines), which are not yet used frequently to develop QSAR models for drug metabolism. Subsequently, rational recommendations for developing predictable and interpretable QSAR models are made. Finally, the recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction, including in vivo hepatic clearance, in vitro metabolic stability, inhibitors and substrates of cytochrome P450 families, are briefly summarized.  相似文献   

16.
Computer-Aided Drug Design (CADD) is an integral part of the drug discovery endeavor at Boehringer Ingelheim (BI). CADD contributes to the evaluation of new therapeutic concepts, identifies small molecule starting points for drug discovery, and develops strategies for optimizing hit and lead compounds. The CADD scientists at BI benefit from the global use and development of both software platforms and computational services. A number of computational techniques developed in-house have significantly changed the way early drug discovery is carried out at BI. In particular, virtual screening in vast chemical spaces, which can be accessed by combinatorial chemistry, has added a new option for the identification of hits in many projects. Recently, a new framework has been implemented allowing fast, interactive predictions of relevant on and off target endpoints and other optimization parameters. In addition to the introduction of this new framework at BI, CADD has been focusing on the enablement of medicinal chemists to independently perform an increasing amount of molecular modeling and design work. This is made possible through the deployment of MOE as a global modeling platform, allowing computational and medicinal chemists to freely share ideas and modeling results. Furthermore, a central communication layer called the computational chemistry framework provides broad access to predictive models and other computational services.  相似文献   

17.

Rhino- and enteroviruses of the Enterovirus genus of the Picornaviridae family are the causative agents of a wide variety of diseases. To date, neither synthetic antiviral drug nor an effective vaccine exists. A leading strategy to combat these viruses is the development of compounds with capsid-inhibiting activity that block viral uncoating and/or viral attachment to the host cell receptors. This review describes step-by-step development of the WIN compounds, which led to the discovery of pleconaril and the subsequent attempts to modify it in order to improve drug-like properties.

  相似文献   

18.
Recent progress in combinatorial chemistry and parallel synthesis has radically changed the approach to drug discovery in the pharmaceutical industry. At present, thousands of compounds can be made in a short period, creating a need for fast and effective in silico methods to select the most promising lead candidates. Decision forest is a novel pattern recognition method, which combines the results of multiple distinct but comparable decision tree models to reach a consensus prediction. In this article, a decision forest model was developed using a structurally diverse training data set containing 232 compounds whose estrogen receptor binding activity was tested at the U.S. Food and Drug Administration (FDA)'s National Center for Toxicological Research (NCTR). The model was subsequently validated using a test data set of 463 compounds selected from the literature, and then applied to a large data set with 57,145 compounds as a screening example. The results show that the decision forest method is a fast, reliable and effective in silico approach, which could be useful in drug discovery.  相似文献   

19.
The discovery of the medicinal properties of gold complexes has fuelled the design and synthesis of new anticancer metallodrugs, which have received special attention due to their unique modes of action. Current research in the development of gold compounds with therapeutic properties is predominantly focused on the molecular design of drug leads with superior pharmacological activities, e.g., by introducing targeting features. Moreover, intensive research aims at improving the physicochemical properties of gold compounds, such as chemical stability and solubility in the physiological environment. In this regard, the encapsulation of gold compounds in nanocarriers or their chemical grafting onto targeted delivery vectors could lead to new nanomedicines that eventually reach clinical applications. Herein, we provide an overview of the state-of-the-art progress of gold anticancer compounds, andmore importantly we thoroughly revise the development of nanoparticle-based delivery systems for gold chemotherapeutics.  相似文献   

20.
As a result of the recent developments of high-throughput screening in drug discovery, the number of available screening compounds has been growing rapidly. Chemical vendors provide millions of compounds; however, these compounds are highly redundant. Clustering analysis, a technique that groups similar compounds into families, can be used to analyze such redundancy. Many available clustering methods focus on accurate classification of compounds; they are slow and are not suitable for very large compound libraries. Here is described a fast clustering method based on an incremental clustering algorithm and the 2D fingerprints of compounds. This method can cluster a very large data set with millions of compounds in hours on a single computer. A program implemented with this method, called cd-hit-fp, is available from http://chemspace.org.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号