首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用甘氨酸燃烧法合成了LaBiMn_2O_6粉体,并与Sm_(0.2)Ce_(0.8)O_(1.9)均匀混合制备了LaBiMn_2O_6-Sm_(0.2)Ce_(0.8)O_(1.9)(LBM-SDC)复合阴极材料。利用X射线衍射(XRD)和扫描电子显微镜(SEM)对材料的物相及微观形貌进行分析,结果表明LBM与SDC在1 000℃下有良好的化学稳定性。SDC的复合增加了氧离子传导路径,进而使氧还原反应(ORR)速度加快。电化学阻抗谱(EIS)测试结果表明,复合阴极极化电阻(Rp)随SDC复合量的增加呈现先降低后升高的趋势,当复合量为30%(w/w)时,阴极材料的性能最优。在700℃空气气氛下的极化电阻为0.186Ω·cm~2,相对LBM(0.717Ω·cm~2)减少74%。氧分压测试结果表明阴极反应的速率控制步骤为氧分子的吸附-解离过程。以复合阴极构筑的电解质支撑单电池Ni-SDC/SDC/LBM-30%SDC在700℃的最大输出功率密度为234 mW·cm~(-2),连续测试90 h输出功率衰减约4%。  相似文献   

2.
应用溶胶-凝胶法制备了Ce_(0.8)Sm_(0.2)O_(1.9)固体电解质粉体,通过X射线衍射对所制备的电解质粉体进行了物相分析。研究表明,Sm2O3已经固溶到CeO_2中形成了具有萤石结构CeO_2基固溶体。经成型并在1450℃下烧结2 h获得致密的Ce_(0.8)Sm_(0.2)O_(1.9)固体电解质。通过组装含有氧离子阻塞电极电池(-)致密Al2O3,Pt|Ce_(0.8)Sm_(0.2)O_(1.9)(SDC)固态电解质|Pt,O2(+)测试空气中不同温度下的电子电导。应用扫描电子显微镜观察所制备试样的微观组织形貌,结果表明:制备的电解质组织致密,高温粘合剂、电解质及刚玉坩埚结合紧密,保证了阻塞电极的气密性。采用Hebb-Wagner离子阻塞电极法测定了Ce_(0.8)Sm_(0.2)O_(1.9)在空气气氛下的电子导电性。结果显示:在测量温度范围内Ce_(0.8)Sm_(0.2)O_(1.9)固体电解质的电子电导率在1×10-8~1×10-6m S·cm-1之间,经计算得出活化能的平均值为0.9885 e V。  相似文献   

3.
用高温固相反应法合成了非化学计量组成的Ba1.05Ce0.8Ho0.2O3-α固体电解质,用粉末X-射线衍射方法鉴定了其晶体结构.用交流阻抗谱技术研究了材料在600℃~1000℃下、湿润氢气和湿润空气气氛中的导电性,测定了其氢–空气燃料电池性能,并与BaCe0.8Ho0.2O3-α的电性能进行了比较.结果表明,Ba1.05Ce0.8Ho0.2O3-α材料为钙钛矿型斜方晶单相结构.在600℃~1000℃温度范围内、湿润氢气和湿润空气气氛中,该材料的电导率高于BaCe0.8Ho0.2O3-α的电导率(1000℃下,在湿润的氢气气氛中它们的电导率分别为2.66×10-2和1.94×10-2 S·cm-1;在湿润的空气气氛中分别为4.31×10-2和1.93×10-2 S·cm-1);以该材料为固体电解质的氢–空气燃料电池性能优于以BaCe0.8Ho0.2O3-α为固体电解质的氢–空气燃料电池性能(1000℃下,它们的最大氢–空气燃料电池输出功率密度分别为139.8和85.8 mW·cm-2).  相似文献   

4.
采用固相法合成中温固体氧化物燃料电池(IT-SOFC)阴极材料Pr_(1-x)SrCo_(0.5)Ni_(0.5)O_(4+δ)(P_(1-x)SCN,x=0.00,0.05,0.10,0.15,0.20),并对材料的物相、热膨胀系数(TEC)、电导率、电极的微观形貌以及电化学性质进行表征。XRD结果表明,该材料形成单一的K_2NiF_4结构,空间群为I4/mmm,并与电解质材料Ce_(0.9)Gd_(0.1)O_(1.95)(CGO)具有良好的高温化学相容性。碘量法分析表明随着Pr离子缺位浓度增加,P_(1-x)SCN中Co/Ni离子平均化合价随着x的增加而升高,至x=0.10后逐渐降低,而氧空位含量逐渐升高。引入Pr离子缺位使材料的电导率明显提高,其中P_(0.90)SCN在700℃空气中电导率值为309 S·cm~(-1)。TEC测试结果显示,随着Pr缺位的增加,热膨胀系数逐渐增大,最大值为1.51×10~(-5)K~(-1)。交流阻抗谱(EIS)测试结果表明,Pr缺位明显降低了电极的极化阻抗值,P_(0.90)SCN阴极在700℃空气中的极化阻抗值为0.21Ω·cm~2。电解质支撑NiO-CGO/CGO/P_(0.90)SCN单电池在700℃最大输出功率密度为197.8 mW·cm~(-2)。  相似文献   

5.
Electrochemical conversion with solid oxide electrolysis cells is a promising technology for CO_2 utilization and simultaneously store renewable energy. In this work, Ce_(0.9)M_(0.1)O_(2-δ)(CeM, M=Fe, Co, Ni) catalysts are infiltrated into La_(0.6) Sr_(0.4) Cr_(0.5_ Fe_(0.5) O_(3-δ)–Gd_(0.2) Ce_(0.8) O_(2-δ)(LSCr Fe-GDC) cathode to enhance the electrochemical performance for CO2 electrolysis. Ce Co-LSCr Fe-GDC cell obtains the best performance with a current density of 0.652 A cm-2, followed by Ce Fe-LSCr Fe-GDC and Ce Ni-LSCr Fe-GDC cells with the value of 0.603 and 0.535 A cm~(-2), respectively, about 2.44, 2.26 and 2.01 times higher than that of the LSCr Fe-GDC cell at1.5 V and 800 °C. Electrochemical impedance spectra combined with distributions of relaxed times analysis shows that both CO_2 adsorption process and the dissociation of CO_2 at triple phase boundaries are accelerated by Ce M catalysts, while the latter is the key rate-determining step.  相似文献   

6.
采用静电纺丝法制备了(Pr_(0.9)La_(0.1))_2(Ni_(0.74)Cu_(0.21)Ga_(0.05))O_(4+δ)(PLNCG)氧化物纳米纤维。利用热重-差热分析(TG-DTA)、X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和扫描电子显微镜(SEM)对材料的物相及微观形貌进行分析。研究表明950℃煅烧5 h得到平均直径420 nm、形貌均一的PLNCG氧化物纤维;1 000℃烧结2 h得到紧密附着在Ce_(0.9)Gd_(0.1)O_(2-δ)(CGO)电解质上的网状结构纤维阴极。电化学阻抗谱(EIS)测试结果表明纳米纤维阴极具有比粉体阴极更优越的性能。700℃的极化电阻(RP)为0.134Ω·cm~2,比同组分的粉末阴极减少32%(RP=0.197Ω·cm~2)。以纤维阴极构筑的电解质支撑单电池Ni-CGO/CGO/PLNCG在700℃的最大输出功率密度为231 m W·cm-2。氧分压测试结果表明阴极反应的速率控制步骤为电荷转移过程。  相似文献   

7.
The solid electrolytes, BaCe_(0.8) Ln_(0.2)O_(2.9) (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900℃. The synthesis temperature by the sol-gel method was about 600℃ lower than the high temperature solid phase reaction method, The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe_(0.8)Gd_(0.2)O_(2.9) is 7.87×10~(-2) S·cm~(-1) at 800℃. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe_(0.8) Gd_(0.2)O_(2.9) as electrolyte was near to 1 V and its maximum power density was 30 mW·cm~(-2).  相似文献   

8.
采用溶液浇注法制备以Li_(6.4)La_3Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)为填料、聚氧化乙烯(PEO)与聚碳酸亚丙酯(PPC)共混的固态复合电解质膜,探讨了LLZTO含量和PPC/PEO比例对复合固态电解质离子电导率的影响。研究发现,当LLZTO含量为30%(w/w)及PPC/PEO质量比为1∶1时,固态复合电解质室温离子电导率最高,达到1.14×10~(-4)S·cm~(-1)。LLZTO和PPC的加入,降低了PEO基电解质的结晶性,提高了离子电导率、电化学稳定窗口(4.7 V)和锂离子迁移数(0.25),并改善了电解质与金属锂的化学稳定性。该固态复合电解质与LiFePO_4/Li组装固态锂电池,室温下在0.1C循环70次后容量保持率82%,60℃下0.1C循环100次后容量保持率79%,0.5C和1C倍率下放电比容量仍能达到120.7和112.6 mAh·g~(-1)。  相似文献   

9.
用高温固相反应法合成了BaxCe0.8Ho0.2O3-α(x=1.03,1,0.97)系列固体电解质,粉末XRD结果表明,各材料均为钙钛矿型斜方晶单相结构.用交流阻抗谱技术研究了材料在600-1000℃下、湿润氢气和湿润空气气氛中的导电性;研究了它们的氢-空气燃料电池性能:讨论了材料的非化学计量组成对其电性能的影响.结果表明,在600-1 000℃温度范围内、湿润氢气和湿润空气气氛中.该系列材料的电导率随温度和钡离子含量的变化均与以该系列材料为固体电解质的氢-空气燃料电池性能随温度和钡离子含量变化的次序一致,即:非化学计量组成材料BaxCe0.8Ho0.2O3-α(x=1.03,0.97)具有较化学计量组成材料BaxCe0.8Ho0.2O3-α(x=1)高的电导率和氢-空气燃料电池输出功率密度,其中BaxCe0.8Ho0.2O3-α有最高的电导率(1000℃时、在湿润的氢气气氛中:2.10×10-2 S·cm-1;在湿润的空气气氛中:3.46×10-2S·cm-1)和最大的氢-空气燃料电池输出功率密度(1 000℃时:122 mW·cm-2).  相似文献   

10.
王亚楠  周和平 《无机化学学报》2008,24(10):1558-1563
采用甘氨酸-硝酸盐(GNP)法合成了新型中温固体氧化物燃料电池(IT.SOFC)的阴极材料Gd1-xSrxCoO3-δ(x=0-0.5)和Gd.0.8Sr0.2Co1-yFeyO3-δ(y=0-1),所合成的初始粉体在800℃下煅烧12 h后均形成了钙钛矿结构的单相固溶体.研究发现,Gd1-xSrxCoO3-δ(GSC)的电导率在600℃时达到了559 S·cm-1,由Ce0.8Cd0.2O2-δ(GDC)电解质和GSC-25GDC材料组成的对称电极在600℃和700℃的界面阻抗分别为0.170Ω·cm2和0.064Ω·cm2,活化能仅为87.8 kJ·mol-1,预示其可以作为ITSOFC较为理想的阴极备选材料;随着Fe3 离子含量的增加,Gd0.8Sr0.2Co1-yFeyO3-δ系列阴极材料的热膨胀系数显著降低,但其电导率也急速下降;此外,通过调整Gd0.8Sr0.2CoO3-δ与GDC的比例可以制备出热膨胀系数与GDC电解质匹配、性能良好的Cd0.8Sr0.2CoO3-δ/GDC复合阴极材料.  相似文献   

11.
以Ba(NO_3)_2, Ce(NO_3)_3·6H_2O, Fe(NO_3)_3·9H_2O, Co(NO_3)_2·6H_2O等为原料,通过EDTA-柠檬酸法合成出BaCe_(0.5)Fe_(0.4)Co_(0.1)O_(3-δ)(BCFC)阴极粉体,并制得烧结体,对BCFC粉体和烧结体的相组成,微观组织和氧还原过程等进行测试分析;以BCFC作阴极, Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)为电解质,NiO-SDC为阳极,组装对称电池和单电池,并进行电化学性能测试分析。实验结果表明:所合成的BCFC粉体原位产生BaCe_(0.15)Fe_(0.75)Co_(0.1)O_(3-δ)和BaCe_(0.85)Fe_(0.05)Co_(0.1)O_(3-δ)两相; BCFC在700℃时的表面氧交换系数(K_(chem))为3.8×10~(-4) cm·s~(-1)。对称电池在600℃的比表面电阻(ASR)为0.819Ω·cm~2,400 h长期性测试和10次热震循环试验后, ASR保持在1.6Ω·cm~2左右;单电池在700和650℃时的最大功率密度分别为290和204 mW·cm~(-2),对应的开路电压分别为0.80和0.82 V。初步研究结果表明BCFC应用于中温固体氧化物燃料电池具有良好的电化学性能和稳定性。  相似文献   

12.
通过高温固相法制备出La_(0.8-x)Bi_xSr_(0.2)FeO_(3-δ)(LBSF)阴极粉体和铒稳定氧化铋(ESB)电解质粉体,通过XRD分别确定其成相温度以及相互之间的化学相容性;以LBSF作为阴极, ESB作为电解质,构成LBSF|ESB|LBSF对称电池,利用交流阻抗法测试阴极的极化行为;用扫描电子显微镜观察电池的断面微结构。结果表明:通过固相合成的LBSF阴极材料呈立方钙钛矿结构。在同一温度下,电导率随Bi_2O_3的掺杂量增加而降低;但极化阻抗随着Bi_2O_3的掺杂量增加而降低,当x=0.4时, LBSF(0.4)的极化阻抗达到最小, 650℃时为1.05Ω·cm~2, 900℃时低达0.17Ω·cm~2。研究结果表明:LBSF是良好的固体氧化物燃料电池阴极材料。  相似文献   

13.
利用溶胶-凝胶法合成了萤石型稀土复合氧化物(Ce_(0.8)La_(0.2))_(1-x)Ca_xO_(2-δ),利用XRD、TEM和SEM对样品进行表征.电化学方法研究表明,合成样品在400~800℃温度范围内具有质子导电特性.将(Ce_(0.8)La_(0.2))_(1-x)Ca_xO_(2-δ)高温烧结体用于固态质子传导电池,在常压下以氮气和氢气为原料合成氨气,并确定了合成氨的适宜条件.650℃时Ce0.8La0.2O2-δ和(Ce_(0.8)La_(0.2))_(1-x)Ca_xO_(2-δ)对应的氨产率分别达7.2×10-9和7.5×10-9mol·s-·1cm-2.  相似文献   

14.
采用溶胶凝胶法(sol-gel)合成了Sr_3Fe_(2-x)Ni_xO_(7-δ)(x=0,0.1,0.2,0.3)系列阴极材料,通过X射线衍射、热膨胀系数测试、电导率测试、极化阻抗(R_p)测试、单电池性能测试等对材料的物相结构、热力学性能、电化学性能进行了表征。结果表明,所有样品均成功合成为具有类钙钛矿结构的单一纯相。热膨胀系数随着Ni元素掺杂含量的提高而不断下降。其高温电导率随着Ni元素掺杂含量的提高而升高,SFN30具有该系列最高的电导率101 S·cm~(-1)。该系列样品的极化阻抗随着Ni元素掺杂含量的提高呈现先下降后上升的趋势,SFN10在800℃具有小的极化阻抗(R_p=0.078 8Ω·cm~2)。电解质支撑的单电池输出功率变化趋势与极化阻抗趋势一致,SFN10在800℃获得421.6 mW·cm~(-2)的输出功率密度。  相似文献   

15.
采用两步干混-球磨方法制备了石墨烯掺杂改性的锂离子电池LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2复合正极材料,实现LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料的高容量和高安全性。借助X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线光电子能谱(XPS)以及电化学测试等表征手段对材料的晶体结构、微观形貌和电化学性能进行了较系统的研究。结果表明,石墨烯的存在实现了Li Fe PO4材料在LiNi_(0.8)Co_(0.15)Al_(0.05)O_2材料表面的完全包覆,形成致密的包覆层,进一步抑制LiNi_(0.8)Co_(0.15)Al_(0.05)O_2与电解液之间的副反应,提高活性材料利用率和循环性能。三者之间构成导电网络,加快电子渗透和传输,提高倍率性能。Li Fe PO4质量分数为20%的Li Fe PO4-Graphene/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品具有最佳的容量性能和长循环性能,0.1C时放电容量达到202.5 m Ah·g~(-1),3C时放电容量仍然可保持在160.5 m Ah·g~(-1)。50℃在2.8~4.3 V,0.5C下循环100次后,容量保持率为91.9%,优于LiNi_(0.8)Co_(0.15)Al_(0.05)O_2和LiFePO_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2样品的72.9%和82.0%。  相似文献   

16.
A series of solid electrolytes (Ce_(0.8)RE_(0.2))_(1-x)M_xO_(2-δ)(RE: Rare earth, M: Alkali earth) were prepared by sol-gel methods. XRD indicated that a pure fluorite phase was formed at 800℃. The synthesis temperature by the sol-gel methods was about 700℃ lower than by the traditional ceramic method. The electrical conductivity and impedance spectra were measured. XPS showed that the oxygen vacancy increased obviously by doping MO, thus, resulting in the increase of the oxygen ionic transport number and conductivity. The performance of ceria-based solid electrolyte was improved. The effects of RE_2O_3 and MO on the electrical properties were discussed. The conductivity and the oxygen ionic transport number of (Ce_(0.8)Sm_(0.2))_(1-0.05)Ca_(0.05)O_(2(?)δ) is 0.126 S·cm~(-1) and 0.99 at 800℃, respectively.  相似文献   

17.
Ce1-xGdxO2-x/2的溶胶-凝胶法合成及其性质   总被引:14,自引:0,他引:14  
利用溶胶-凝胶法合成了Ce1-xGdxO2-x/2(x=0.1~0.6)系列固体电解质,系统地研究了其结构、热膨胀系数和导电性.XRD结果表明,160℃即完全形成立方萤石结构.由于溶胶-凝胶法合成的物质粒度均匀,颗粒小,故在较低温度(1300℃)时即可形成高致密样品,此温度明显低于传统的高温固相法烧结温度(1600~1650℃).高温X射线衍射测得Ce0.8Gd0.2O1.9的热膨胀系数为8.125×10-6K1.阻抗谱表明,溶胶-凝胶法合成可减少或消除固体电解质的晶界电阻,600℃时Ce0.8Gd0.2O1.9的电导率为5.26×10-3S/cm,活化能Ea=0.82eV.  相似文献   

18.
以Ce(NO_3)_3和NH_4HCO_3为原料,在微反应器中采用液-液沉淀法制备出水合碳酸氧铈(Ce_2O(CO_3)_2·H_2O)前驱体材料,将前驱体样品进行热处理后获得纯净的CeO_2产品。分别采用电感耦合等离子体质谱仪(ICP-MS)、 X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和能谱分析仪(EDS)、热重-差热分析仪(TG-DTA)等对制备的前驱体和热解产品进行分析表征。结果表明:微反应器内23.6 s的停留时间, Ce~(3+)在不同反应温度下均可达到99.8%以上的沉淀率。反应温度为70℃及以上时,获得结晶度更好的Ce_2O(CO_3)_2·H_2O前驱体,为类六棱形片叠加的花瓣状规则形貌,粒径较小。此前驱体样品在600℃下热处理2 h后制备得到了纯净单一的立方晶系CeO_2产品,无其他杂质,形貌与Ce_2O(CO_3)_2·H_2O前驱体一致。  相似文献   

19.
用热重-差热分析法对Y_2O_3前驱体Y_2(CO_3)_3和Y_2(C_2O_4)_3水合物热分解过程及动力学进行分析,通过Kissinger法、 Ozawa法和Coast-Redfern法等对实验数据进行处理,得出Y_2(C_2O_4)_3水合物的热分解分四步进行,前两步为脱水过程,后两步为分解过程,四步反应对应的活化能E_c分别为64.24, 59.48, 146.20和112.37 kJ·mol~(-1);指前因子A_c分别为:4.09×10~8, 3.83×10~5, 6.86×10~(10)和6.18×10~5。每一步的机制函数分别是:1-(1-α)~(1/2)=kt, 1-(1-α)~(1/3)=kt,[(1-α)~(-2)-1]/2=kt和[-ln(1-α)]~(1/3)=kt。而Y_2(CO_3)_3在空气中热分解只有两步,第一步脱3个H_2O和1个CO_2分子,第二步脱2个CO_2分子生成Y_2O_3,两步对应的活化能E_c分别为88.29和116. 53 kJ·mol~(-1),指前因子A_c分别为1.5×10~(13)和9.4×10~7。它们的机制函数分别为(1-α)~(-1)-1=kt和[1-(1-α)~(1/3)]~2=kt。前驱体Y_2(CO_3)_3水合物相对来说比Y_2(C_2O_4)_3水合物更易分解生成Y_2O_3,两种前驱体的热分解都是最后一步为控速步骤。  相似文献   

20.
采用甘氨酸-硝酸盐法一步合成含有低浓度聚乙烯吡咯烷酮(PVP-K30)造孔剂的NiO-Ce_(0.8)Gd_(0.2)O_(2-δ)(NiO-GDC)复合阳极粉体,研究添加不同含量(3%, 5%, 7%)PVP-K30造孔剂对NiO-GDC阳极表面吸附、孔隙率及阳极形貌的影响。实验结果表明,当PVP-K30造孔剂添加比为5%时,阳极比表面积为35.47 m~2·g~(-1),孔隙率为24.75%,孔容较大且成孔均匀。应用5%PVP-K30造孔剂制备的电解质支撑NiO-GDC┃GDC┃LSCF-GDC固体氧化物燃料电池,在650℃下,单电池开路电压为0.91 V,最大功率密度为0.112 W·cm~(-2)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号