共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
硫镍基赝电容超级电容器具有较高的比电容和功率密度等优点,是下一代理想的储能装置之一,但其实际应用受到其活性材料的制约,如导电性低和循环性能差等。研究者围绕增强硫镍基赝电容电极材料导电性和提升循环稳定性进行了大量的研究工作。其中,构建自支撑的电极材料被认为是一种降低活性材料和集流体之间界面电阻的有效方法。本文综述了制备自支撑硫镍基赝电容电极的常见方法,并就活性材料的形貌与性能关系进行了总结,主要着眼于集流体改性、离子掺杂、复合材料构建及形貌调控优化等。最后对自支撑硫镍基赝电容电极材料的研究方向进行了展望。 相似文献
4.
以氧化石墨、间苯二酚、甲醛和泡沫镍为原料,经85 oC水热碳化处理,在泡沫镍表面原位聚合形成了碳凝胶/泡沫镍一体化电极,冷冻干燥处理后可得多孔碳凝胶/泡沫镍一体化电极. 水系和有机系的超级电容器测试表明,多孔碳凝胶/泡沫镍一体化电极具有较高的比容量和良好的循环稳定性,其独特的一体化电极组成和多孔结构有利于电子和电解液离子的有效传输. 相似文献
5.
采用简单的水热法制备出功能化石墨烯与CoOOH的复合物,再通过低温热处理得到功能化石墨烯-Co3O4复合材料;采用扫描电子显微镜分析了样品的形貌;测定了其电化学性能和氮气吸脱附行为.结果表明,Co3O4粒子很好地负载在石墨烯片层之间和表面;形成的复合物具有纳米孔道结构,这些纳米孔道结构有利于电解液离子的传输;而石墨烯良好的导电性有利于电子传递和提高Co3O4粒子的电容贡献值.与此同时,复合物在充放电电流密度为1A/g时的电容达320F/g,表现出优异的超电容性能. 相似文献
6.
超声分散氧化石墨和聚苯乙烯微球于去离子水形成稳定分散液, 加入氨水和水合肼还原氧化石墨得到包覆石墨烯纳米片的聚苯乙烯微球, 经6 mol·L-1 KOH碱蚀和甲苯洗脱聚苯乙烯制备3D石墨烯. 将3D石墨烯超声分散于去离子水, 然后分别以硝酸镍、硝酸铝和尿素为镍源、铝源和碱源化合物水热合成3D石墨烯/镍铝层状双金属氢氧化物复合材料. 采用红外、拉曼、X射线衍射、扫描电镜、透射电镜和恒电流充-放电测试对材料的结构、形貌及电化学性质进行研究. 结果表明, 氧化石墨被还原形成有微孔结构的3D石墨烯. 镍铝双金属氢氧化物纳米片均匀分散在3D石墨烯孔壁. 在1 A·g-1的电流密度下, 复合材料电极的比电容为1054.8 F·g-1. 当电流密度增加到8 A·g-1时, 比电容为628.1 F·g-1. 循环充-放电1000次后, 比电容仍保持在97%以上, 呈示该复合材料具有优异的电化学性能. 相似文献
7.
三维还原氧化石墨烯/聚苯胺复合材料的制备及其超级电容性能 总被引:3,自引:0,他引:3
以制备的氧化石墨凝胶和聚苯胺纳米线为原料, 将二者按一定的质量比进行混合超声分散, 再以混合分散液为前驱体采用一步水热法制备得到三维还原氧化石墨烯(RGO)/聚苯胺(PANI) (RGP)复合材料, 采用扫描电镜(SEM), 透射电镜(TEM), X射线衍射(XRD), 傅里叶变换红外(FT-IR)光谱, X射线光电子能谱(XPS)和电化学测试等分析研究了复合材料的形貌、结构和超级电容性能. 结果表明, 复合材料既保持了还原氧化石墨烯的基本形貌, 又能使聚苯胺较好地镶嵌在还原氧化石墨烯的网状结构中; 且当氧化石墨与聚苯胺的质量比为1:1时复合材料在0.5 A·g-1电流密度下比电容可高达758 F·g-1, 即使在大电流密度(30 A·g-1)下其比容量仍高达400 F·g-1,在1A·g-1电流密度下循环1000次后比容量保持率为86%, 表现出了良好的倍率性能和循环稳定性, 其超级电容性能远优于单纯的还原氧化石墨烯和聚苯胺, 其优异的超级电容性能可归咎于二者的相互协同作用. 相似文献
8.
采用微波辐射与高温裂解相结合的二步还原法制备石墨烯。二步还原使氧化石墨被充分还原和剥离,所得到的石墨烯有较好的传导性,其比表面达675.4 m2.g-1。以此石墨烯为原料,水热法合成出石墨烯/钴镍双金属氢氧化物复合材料,并考察了复合材料作为超级电容电极材料的电化学性能。研究发现,褶皱的石墨烯纳米片均匀分散在钴镍双金属氢氧化物中,这改善了钴镍双金属氢氧化物的传导性和结构稳定性。在0.25 A.g-1电流密度下,复合材料的比电容量是800.2 F.g-1。当电流密度增加至10 A.g-1,比电容量为386.5 F.g-1,恒电流充-放电500次后比电容量仍能保持99%以上,这些呈示该复合材料具有优良的电化学性能。 相似文献
9.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为 1 A·g-1时,比电容为 1 560.7 F·g-1,在电流密度为 40 A·g-1时循环 2 000次后,比电容仍为初始比电容的 76.7%。将 NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在 400 W·kg-1的功率密度下可提供 29.0 Wh·kg-1的能量密度。 相似文献
10.
以泡沫镍作为基底,采用水热法原位生长出具有片状结构的NiMoO4活性材料,然后通过水热硫化制备出NiMoO4/NiMoS4复合材料,研究了水热时间和硫脲添加量对样品形貌和电化学性能的影响。电化学结果表明,NiMoO4/NiMoS4电极在电流密度为1A·g-1时,比电容为1560.7F·g-1,在电流密度为40A·g-1时循环2000次后,比电容仍为初始比电容的76.7%。将NiMoO4/NiMoS4电极材料与活性炭(AC)分别作为正、负极组装的非对称超级电容器(ASC)在400W·kg-1的功率密度下可提供29.0Wh·kg-1的能量密度。 相似文献
11.
采用两步水热法和高温退火法成功制备了三维氧化镍/钼酸钴(NiO/CoMoO_4)复合电极材料。利用XRD、扫描电镜、透射电镜和电化学方法分别对其结构、表面形貌和电化学性能进行了表征和研究。结果表明,NiO/CoMoO_4呈独特的纳米线/片状结构而不同于NiO的针状形貌,其结构为活性物质提供了更大的活性位点。在电流密度为0. 3A/g时,复合物的比电容高达2253F/g,远远高于同电流密度下纯NiO电极材料的比电容,循环2000圈后,电容的保持率为92%,NiO和CoMoO_4的协同效应增强了其超级电容特性。 相似文献
12.
以乙二醇为溶剂,硫代乙酰胺为硫源,采取简单的溶剂热法成功合成了由纳米棒组成的海胆状硫化镍空心球,扫描电镜图片清楚地揭示了海胆状空心结构,XRD测试结果表明产品中存在α和β两种相结构,但主要组分为β-NiS. 跟踪产物随时间的变化,研究了海胆状空心球的形成过程. 先形成实心的海胆状结构,进一步熟化导致空心结构的形成. 作为锂离子电池的阴极材料,测定了海胆状硫化镍空心球的电化学性能,首次放电容量超过900mAh g-1,高于文献报道的理论容量,循环五十次后,稳定在约200 mAh g-1. 相似文献
13.
采用氢气模板法制备了具有多孔结构的电极; 通过改变电镀电流密度和电镀时间实现了电极表面多孔结构孔径和分布的控制; 通过改变表面化学组成有效调控了电极表面的浸润性质. 比较了具有不同微观结构和表面化学组成的电极在给定条件下电解水过程中气泡的产生及行为机制. 实验结果表明: 相对于亲水的多孔电极, 疏水的多孔电极表面能够黏附气泡, 更易倾向于形成稳定的气膜; 多孔结构对于亲水电极表面气泡行为的影响比对疏水电极表面气泡行为的影响更为显著; 与没有多孔结构的亲水电极相比, 具有多孔结构的亲水电极表面产生的气泡数量多, 速率快; 与较小孔径的多孔亲水电极相比, 较大孔径的多孔亲水电极表面产生气泡速率快且黏附气泡数量少. 该研究结果为微气泡减阻电极的设计提供了理论依据. 相似文献
14.
分别采用浸渍燃烧法和共燃烧法制备了一系列Ni-Al_2O_3催化剂,并对催化剂进行了表征,研究了燃料种类对不同方法制备的催化剂结构及浆态床CO甲烷化性能的影响.结果表明,以尿素、甘氨酸和乙二醇为燃料时,采用浸渍燃烧法制备的Ni-Al_2O_3催化剂织构性质均与载体相近,各催化剂金属Ni分散度和Ni晶粒相差不大,甲烷化性能接近,在260℃反应温度下CO转化率在80.1%~83.5%之间.而共燃烧法制备的Ni-Al_2O_3催化剂受燃烧过程影响明显,以甘氨酸和乙二醇为燃料时制得的催化剂比表面积较小,金属Ni分散度低且Ni晶粒较大,因而甲烷化活性较低;以尿素为燃料制备的催化剂比表面积大且Ni晶粒较小,CO转化率和CH_4选择性分别达到84.7%和91.1%. 相似文献
15.
《Angewandte Chemie (International ed. in English)》2017,56(18):4941-4944
The development of technologically viable electrodes for the electrochemical oxygen evolution reaction (OER) is a major bottleneck in chemical energy conversion. This article describes a facile one‐step hydrothermal route to deposit microcrystals of a robust Dexter–Silverton polyoxometalate oxygen evolution catalyst, [Co6.8Ni1.2W12O42(OH)4(H2O)8], on a commercial nickel foam electrode. The electrode shows efficient and sustained electrochemical oxygen evolution at low overpotentials (360 mV at 10 mA cm−2 against RHE, Tafel slope 126 mV dec−1, faradaic efficiency (96±5) %) in alkaline aqueous solution (pH 13). Post‐catalytic analyses show no mechanical or chemical degradation and no physical detachment of the microcrystals. The results provide a blueprint for the stable “wiring” of POM catalysts to commercial metal foam substrates, thus giving access to technologically relevant composite OER electrodes. 相似文献
16.
新型锂离子电池三维结构泡沫NiO电极的制备及电化学性能 总被引:3,自引:2,他引:1
通过固相氧化方法,以三维结构泡沫镍为基体和金属镍源,制备了三维结构泡沫氧化镍负极。XRD和SEM结果表明,经500℃氧化处理,泡沫镍基体上形成了NiO微米级的致密活性氧化层。通过充放电测试和循环伏安测试研究了电极的电化学性能,结果表明,三维结构泡沫氧化镍在放电电位区间0.05~3.2VvsLi/Li+,0.2C倍率下充放电,初始容量损失为20%,且经40次循环后,质量比容量为950mAh·g-1,三维泡沫氧化镍电极具有优异的循环容量保持性能。三维泡沫氧化镍具有的大的活性表面积,降低了界面反应的极化,从而提高了NiO电极的倍率放电性能。 相似文献
17.
18.
Sungho Kim Wangsoo Cha Kavitha Ramadass Gurwinder Singh In Young Kim Ajayan Vinu 《化学:亚洲杂志》2020,15(12):1863-1868
Molybdenum disulfide (MoS2) is a promising candidate as a high‐performing anode material for sodium‐ion batteries (SIBs) due to its large interlayer spacing. However, it suffers from continued capacity fading. This problem could be overcome by hybridizing MoS2 with nanostructured carbon‐based materials, but it is quite challenging. Herein, we demonstrate a single‐step strategy for the preparation of MoS2 coupled with ordered mesoporous carbon nitride using a nanotemplating approach which involves the pyrolysis of phosphomolybdic acid hydrate (PMA), dithiooxamide (DTO) and 5‐amino‐1H‐tetrazole (5‐ATTZ) together in the porous channels of 3D mesoporous silica template. The sulfidation to MoS2, polymerization to carbon nitride (CN) and their hybridization occur simultaneously within a mesoporous silica template during a calcination process. The CN/MoS2 hybrid prepared by this unique approach is highly pure and exhibits good crystallinity as well as delivers excellent performance for SIBs with specific capacities of 605 and 431 mAhg?1 at current densities of 100 and 1000 mAg?1, respectively, for SIBs. 相似文献
19.
利用水热法制备了粒径为90-130 nm的多孔硬碳球, 并通过浸渍与煅烧的方法制备了硬碳球均匀负载纳米氧化镍颗粒(~10 nm)复合材料. 硬碳球的表面官能团和内部的微孔保证了氧化镍颗粒在硬碳上的均匀分布. 在100 mA·g-1的电流密度下, 复合材料电极首次充电比容量高达764 mAh·g-1; 在100 mA·g-1的电流密度下循环100 个周期后电极充电比容量保持在777 mAh·g-1, 容量保持率为101%; 800 mA·g-1电流密度下电极的充电比容量达380 mAh·g-1, 显示复合材料电极具有优异的循环性能和倍率性能. 硬碳的表面官能团和内部微孔为氧化镍提供了优先形核位点, 保证了二者的牢固结合, 使复合材料获得了“协同效应”, 从而使复合电极具备更短的锂离子扩散路径、更高的电导率和更多的锂离子脱嵌位点. 这种方法还可用于制备硬碳/其他金属氧化物复合材料. 相似文献
20.