首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a two-dimensional shallow water system over movable beds. We begin with a continuous system and prove the existence of the solutions, and then we investigate their smoothness. Then, we employ a Galerkin method to obtain a finite-dimensional problem which is solved using a Brouwer fixed point theorem. Therefore, we show that the limits of the resulting solution sequences satisfy the model equations.After solving the continuous problem, we focus on the corresponding discrete problem. We employ a local discontinuous Galerkin scheme for numerical solution of the discrete system and conduct an error analysis of the numerical scheme. We prove that the method is convergent and that the error is bounded according to a specific norm defined herein.  相似文献   

2.
In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear differential dynamic system from the given discrete data of the solution. We propose a model and a corresponding algorithm to recover the coefficient matrix of the differential system based on the normal vectors from the given discrete points, in order to avoid the problem of parameterization in curve fitting and approximation. We also give some theoretical analysis on our algorithm. When the data points are taken from the solution curve and the set composed of these data points is not degenerate, the coefficient matrix $A$ reconstructed by our algorithm is unique from the given discrete and noisefree data. We discuss the error bounds for the approximate coefficient matrix and the solution which are reconstructed by our algorithm. Numerical examples demonstrate the effectiveness of the algorithm.  相似文献   

3.
Torsten Linss 《PAMM》2003,2(1):487-488
A singularly perturbed convection‐diffusion problem is considered. The problem is discretized using a simple firstorder upwinded difference scheme on general meshes. We derive an expansion of the error of the scheme that allows us to give error bounds in the discrete maximum norm, uniformly with respect to the perturbation parameter, for both a defect correction method and the Richardson extrapolation technique. This generalizes and simplifies results obtained in earlier publications [2], [8].  相似文献   

4.
The Super-Halley method is one of the best known third-order iteration for solving nonlnear equations. A Newton-like method which is an approximation of this method is studied. Our approach yields a fourth R-order iterative process which is more efficient than its classical predecessor. We establish a Newton-Kantorovich-type convergence theorem using a new system of recurrence relations, and give an explicit expression for the a priori error bound of the iteration.  相似文献   

5.
The Super-Halley method is one of the best known third-order iteration for solving nonlnear equations. A Newton-like method which is an approximation of this method is studied. Our approach yields a fourth R-order iterative process which is more efficient than its classical predecessor. We establish a Newton-Kantorovich-type convergence theorem using a new system of recurrence relations, and give an explicit expression for the a priori error bound of the iteration.  相似文献   

6.
In this paper we are concerned with a kind of nonlinear transmission problem with Signorini contact conditions. This problem can be described by a coupled FEM-BEM variational inequality. We first develop a preconditioning gradient projection method for solving the variational inequality. Then we construct an effective domain decomposition preconditioner for the discrete system. The preconditioner makes the coupled inequality problem be decomposed into an equation problem and a “small” inequality problem, which can be solved in parallel. We give a complete analysis to the convergence speed of this iterative method.  相似文献   

7.
8.
In this paper, we consider a non-overlapping domain decomposition method combined with the characteristic method for solving optimal control problems governed by linear convection–diffusion equations. The whole domain is divided into non-overlapping subdomains, and the global optimal control problem is decomposed into the local problems in these subdomains. The integral mean method is utilized for the diffusion term to present an explicit flux calculation on the inter-domain boundary in order to communicate the local problems on the interfaces between subdomains. The convection term is discretized along the characteristic direction. We establish the fully parallel and discrete schemes for solving these local problems. A priori error estimates in \(L^2\)-norm are derived for the state, co-state and control variables. Finally, we present numerical experiments to show the validity of the schemes and verify the derived theoretical results.  相似文献   

9.
We consider a concept of linear a priori estimate of the accuracy for approximate solutions to inverse problems with perturbed data. We establish that if the linear estimate is valid for a method of solving the inverse problem, then the inverse problem is well-posed according to Tikhonov. We also find conditions, which ensure the converse for the method of solving the inverse problem independent on the error levels of data. This method is well-known method of quasi-solutions by V. K. Ivanov. It provides for well-posed (according to Tikhonov) inverse problems the existence of linear estimates. If the error levels of data are known, a method of solving well-posed according to Tikhonov inverse problems is proposed. This method called the residual method on the correctness set (RMCS) ensures linear estimates for approximate solutions. We give an algorithm for finding linear estimates in the RMCS.  相似文献   

10.
We consider the Cauchy problem in a Hilbert space for a second-order abstract quasilinear hyperbolic equation with variable operator coefficients and nonsmooth (but Bochner integrable) free term. For this problem, we establish an a priori energy error estimate for the semidiscrete Galerkin method with an arbitrary choice of projection subspaces. Also, we establish some results on existence and uniqueness of an exact weak solution. We give an explicit error estimate for the finite element method and the Galerkin method in Mikhlin form.  相似文献   

11.
We show that the cost of solving initial value problems for high-index differential algebraic equations is polynomial in the number of digits of accuracy requested. The algorithm analyzed is built on a Taylor series method developed by Pryce for solving a general class of differential algebraic equations. The problem may be fully implicit, of arbitrarily high fixed index and contain derivatives of any order. We give estimates of the residual which are needed to design practical error control algorithms for differential algebraic equations. We show that adaptive meshes are always more efficient than non-adaptive meshes. Finally, we construct sufficiently smooth interpolants of the discrete solution. AMS subject classification (2000) 34A09, 65L80, 68Q25  相似文献   

12.
The purpose of this paper is to analyze an efficient method for the solution of the nonlinear system resulting from the discretization of the elliptic Monge-Ampère equation by a $C^0$ interior penalty method with Lagrange finite elements. We consider the two-grid method for nonlinear equations which consists in solving the discrete nonlinear system on a coarse mesh and using that solution as initial guess for one iteration of Newton's method on a finer mesh. Thus both steps are inexpensive. We give quasi-optimal $W^{1,\infty}$ error estimates for the discretization and estimate the difference between the interior penalty solution and the two-grid numerical solution. Numerical experiments confirm the computational efficiency of the approach compared to Newton's method on the fine mesh.  相似文献   

13.
We present a theoretical framework for reproducing kernel-based reconstruction methods in certain generalized Besov spaces based on positive, essentially self-adjoint operators. An explicit representation of the reproducing kernel is given in terms of an infinite series. We provide stability estimates for the kernel, including inverse Bernstein-type estimates for kernel-based trial spaces, and we give condition estimates for the interpolation matrix. Then, a deterministic error analysis for regularized reconstruction schemes is presented by means of sampling inequalities. In particular, we provide error bounds for a regularized reconstruction scheme based on a numerically feasible approximation of the kernel. This allows us to derive explicit coupling relations between the series truncation, the regularization parameters and the data set.  相似文献   

14.
ABSTRACT

In this paper, a stabilized space-time finite element method for solving linear parabolic evolution problems is analyzed. The proposed method is developed on a base of a space-time variational setting, that helps on the simultaneous and unified discretization in space and in time by finite element techniques. Stabilization terms are constructed by means of classical bubble spaces. Stability of the discrete problem with respect to an associated mesh dependent norm is proved, and a priori discretization error estimates are presented. Numerical examples confirm the theoretical estimates.  相似文献   

15.
In this paper, a new method for numerically solving nonlinear convection-dominated diffusion problems is devised and analysed. The discrete time approximations with time stepping along charactcristics are cstablished and solved in spaces posscssing reproducing kernel functions. At each time step, the exact solution of the approximate problem is given by explicit expression. The computational advantage of this method is that the schemes are absolutely stable, and are explicitly solvable as well. The stability and error estimates are derived. Some numerical results are given.  相似文献   

16.
This work concerns with the discontinuous Galerkin (DG) method for the time‐dependent linear elasticity problem. We derive the a posteriori error bounds for semidiscrete and fully discrete problems, by making use of the stationary elasticity reconstruction technique which allows to estimate the error for time‐dependent problem through the error estimation of the associated stationary elasticity problem. For fully discrete scheme, we make use of the backward‐Euler scheme and an appropriate space‐time reconstruction. The technique here can be applicable for a variety of DG methods as well.  相似文献   

17.
黄萍  陈金如 《计算数学》2010,32(1):81-96
本文研究了用(~P)_1-Q_0元(其中(~P)_1表示P_1非协调四边形元)解Stokes问题的非协调混合有限元稳定化逼近方法.(~P)_1-Q_0元不满足LBB条件(见[7,14] ),因而其不能直接用来求解Stokes问题.受[3] 的启发,我们提出了一种用(~P)_1-Q_0元解Stokes问题的稳定化方法,证明了这种方法的稳定性和离散问题解的存在唯一性,得到了最优误差估计.文章最后给出的数值算例验证了我们的理论结果.  相似文献   

18.
We establish an explicit formula for reconstruction of a harmonic function in a domain from its values and the values of its normal derivative on part of the boundary; i.e., we give an explicit solution to the Cauchy problem for the Laplace equation.  相似文献   

19.
We establish an explicit formula for reconstruction of a harmonic function in a domain from its values and the values of its normal derivative on part of the boundary; i.e., we give an explicit solution to the Cauchy problem for the Laplace equation.  相似文献   

20.
An order-optimal method is proposed of approximately solving an inverse problem for a parabolic equation with variable coefficients. We give an order-exact estimate for the error of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号