首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

2.
用液相反应-前驱物烧结法制备了Cr2(WO4)3和Cr2(MoO4)3粉体。298~1 073 K的原位粉末X射线衍射数据表明Cr2(WO4)3和Cr2(MoO4)3的晶胞体积随温度的升高而增大, 本征线热膨胀系数分别为(1.274±0.003)×10-6 K-1和(1.612±0.003)×10-6 K-1。用热膨胀仪研究了Cr2(WO4)3和Cr2(MoO4)3在静态空气中298~1 073 K范围内热膨胀行为,即开始表现为正热膨胀,随后在相转变点达到最大值,最后表现为负热膨胀,其负热膨胀系数分别为(-7.033±0.014)×10-6 K-1和(-9.282±0.019)×10-6 K-1。  相似文献   

3.
For the first time ever it is demonstrated in this work that, in spontaneous conditions and following the imposition of an electric field, mutual penetration of components of WO3 and Me2(WO4)3 occurs at heterophase interfaces WO3|Me2(WO4)3 where Me = In, Eu, or Sc. Tungstic oxide WO3 is pulled onto the inner surface of ceramic Me2(WO4)3 and, in turn, components of Me2(WO4)3 penetrate onto the surface of grains of ceramic WO3, which is confirmed by the method of x-ray—fluorescence analysis. Data concerning the conductivity and transport numbers of Eu2(WO4)3 and a composite on its basis, which was manufactured as a result the electrosurface transport of WO3, are obtained for the first time ever. With allowance made for the data on the O2? character of the ionic conduction in MeWO4 and Eu2(WO4)3 it is concluded that the type of ionic carriers in tungstates (Me n+)2/n [WO4] makes no impact on the mechanism of spontaneous and field-induced processes that are developing at the (Me n+)2/n [WO4]|WO3 interfaces.  相似文献   

4.
A high-pressure Raman scattering study of the tungstate Al2(WO4)3 is presented. This study showed the onset of two reversible phase transitions at 0.28±0.07 and 2.8±0.1 GPa. The pressure evolution of Raman bands provides strong evidences that both the transitions involve rotations/tilts of nearly rigid tungstate tetrahedra and that the structure of the stable phase in the 0.28-2.8 GPa range may be the same as the structure of the ambient pressure, low-temperature monoclinic (C2h5) ferroelastic phase of Al2(WO4)3.  相似文献   

5.
The solid state transitions of the WO3γ-Al2O3 system have been investigated in the temperature range 873–1323 K. The formation of α-Al2O3 and Al2(WO4)3 phases and the thermal desorption of W(VI) attached to the γ-Al2O3 surface have been studied as function of the treatment time. The inhibition of the phase transition to α-Al2O3 and therefore the stabilization of the surface has been observed at 1323 K for samples with 7% WO3 content. This stabilization is critically affected by the tungsten content. An explanation for the stabilization of the alumina surface is proposed.  相似文献   

6.
In ground mixtures of In2O3 and NH4Y, incorporation of In+ cations into the zeolitic phase occurs upon thermal treatment by partial reductive solid-state ion exchange associated with oxidation of ammonium ions or released ammonia to N2 and NH2OH. Cationic InO+ species, created in zeolites by reductive solid-state ion exchange of In2O3/NH4-zeolite mixtures in hydrogen atmosphere and subsequent oxidation of the In+ lattice cations by oxygen, do not undergo autoreduction up to 970 K. Reductive solid-state ion exchange easily proceeds in carbon monoxide atmosphere at temperatures between 620 and 770 K. The significance of these observations for the use of indium-containing zeolites as catalysts is discussed.  相似文献   

7.
A new transparent conductor, containing pentavalent antimony, In4+xSn3−2xSbxO12, has been synthesized for 0?x?1.5. The latter exhibits an ordered oxygen-deficient fluorite structure with an ordered distribution of Sb5+ and In3+/Sn4+ species in the octahedral and seven-fold coordinated sites, respectively. More importantly, it is shown that the electronic conductivity of this transparent conducting oxide (TCO) at room temperature, is one order of magnitude larger for x=1 (In5SnSbO12) than for x=0 (In4Sn3O12) and it turns to a semi-metallic behavior in contrast to In4Sn3O12 which is a semi-conductor. The potential of this new material, as TCO, is also shown by its reflectance spectra, similar to In4Sn3O12, involving only a small increase of the optical bandgap, by 0.15 eV.  相似文献   

8.
Vibrational spectra of polycrystalline WO3 hydrates and polymorphs were measured and analyzed. The effect of sampling techniques on IR spectra has been demonstrated. The phase transition into triclinic polymorph (C52 h → C1i) has been revealed for the sample of monoclinic WO3 prepared as KBr pellet. Using the deuteration method in situ has shown that cubic WO3 is non-stoichiometric oxide stabilized by residual OH groups of WO3·H2O precursor.  相似文献   

9.
A series of Re/Ga2O3/WO3/ZrO2 catalysts were prepared by the impregnation method. The crystalline structure, redox, and acid site distribution of the catalysts were characterized by X-ray powder diffraction, temperature-programmed reduction of H2, and temperature-programmed desorption of NH3. Their catalytic performance for n-hexane isomerization was studied. The results showed that the addition of Re greatly affected the redox properties and the acid site distribution of the catalysts. Owing to the presence of Re, n-hexane isomerization was catalyzed by metal and acid sites, and thus the conversion of n-hexane and the selectivity for 2,2-dimethylbutane were significantly increased. Under the conditions of 195 °C, 1.0 MPa, LHSV = 1.0 h−1, and n(H2)/n(C6) = 2.0, the conversion of n-hexane over 1.0%Re/1.0%Ga2O3/WO3/ZrO2 is 84.8%, and the selectivities for 2,2-dimethylbutane, i-hexane, and cracking products (C5-) are 20%, 97.7%, and 2.1%, respectively. The catalyst is stable during 150 h operation.  相似文献   

10.
Summary Cyclic voltammetry on solid phases using the carbon-paste electrode (CPE) has been applied to the In- In2O3 system. Electrochemical reactions can be recorded more sensitively, and interpretation of the complex processes is simpler with AC voltammetry.Additional electrochemical experiments concerning the condition of formation and the chemical stability of intermediates yielded a model of electrochemical reactions in connection with preliminary and consecutive chemical processes.It is possible to detect unambiguously In and In2O3 simultaneously in 1 N HBr, but not in 1 N HCl.
Simultanbestimmung von In und In2O3 durch cyclische Voltammetrie (Gleich- und Wechselstrom)
Zusammenfassung Die cyclische Voltammetrie unter Verwendung der Kohlepasteelektrode wurde am System In- In2O3 angewandt. Durch den Einsatz der Wechselstrom-Voltammetrie können die elektrochemischen Reaktionen empfindlicher erfaßt und komplexe Prozesse klarer interpretiert werden.Ergänzende elektrochemische Experimente zur Aufklärung der Bildungsbedingungen und chemischen Stabilität von Zwischenprodukten ergeben ein Modell der elektrochemisch auswertbaren Reaktionen unter Berücksichtigung vor- und nachgelagerter chemischer Prozesse.Es ist in 1 N HBr, nicht aber in 1 N HCl, möglich, In und In2O3 eindeutig nebeneinander nachzuweisen.
  相似文献   

11.
Crystallographic shear (CS) phases occurring in the Nb2O5WO3 and Ta2O5WO3 systems near to WO3 were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The Nb2O5WO3 samples were heated at 1600K. They contained ordered {104} and {001} CS planes and wavy CS which were composed of intergrowths of {104} and {001} CS segments. The composition range over which the {104} CS series extended was from (Nb,W)O2.954 i.e., (Nb,W)65O192, to (Nb,W)O2.942, i.e., (Nb,W)52O153. The composition range over which the {001} CS series extended was from (Nb,W)O2.9375, i.e., (Nb,W)16O47 to (Nb,W)O2.875, i.e., (Nb,W)8O23. The Ta2O5WO3 samples were prepared at 1593, 1623, and 1672K. At lower temperatures ordered {103} CS phases were found, with a composition range extending between (Ta,W)O2.960, i.e., (Ta,W)50O148, to (Ta,W)O2.944, i.e., (Ta,W)36O106. At 1673K ordered {103} CS phases occurred, as did wavy CS composed of intergrowths of {103} and {104} CS segments.  相似文献   

12.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

13.
We have found for the first time a ferroelastic transition in many molybdates and tungstates with the Sc2(MoO4)3-type structure. Below the transition these phases are monoclinic (P21a), and above the transition they are orthorhombic (Pnca). Observed transition temperatures are: Al2(MoO4)3, 200°C; Al2(WO4)3, ?6°C; Cr2(MoO4)3, 385°C; Fe2(MoO4)3, 499°C; In2(MoO4)3, 335°C; In2(WO4)3, 252°C; and Sc2(MoO4)3, 9°C.  相似文献   

14.
(WO3)0.15(BiO1.5)0.85 exhibits a tetragonal structure derived from the fluorite subcell. The electrical conductivity of (WO3)0.15(BiO1.5)0.85 is lower than that of Y2O3-doped Bi2O3. The structure and electrical conductivity of samples formulated as (YO1.5) x (WO3)0.15(BiO1.5)0.85- x (x = 0.1, 0.2, 0.3, and 0.4) were investigated. The as-sintered (YO1.5)0.1(WO3)0.15(BiO1.5)0.75 exhibited a single cubic structure that is isostructural with δ-Bi2O3. For x = 0.2, 0.3, and 0.4, the as-sintered samples consisted of a cubic fluorite structure and rhombohedral Y6WO12. After heat treatment at 600 °C for 200 h, the cubic structures are stable for x = 0.1, 0.3, and 0.4. A transformation from cubic to rhombohedral phase after heat treatment at 600 °C for 200 h was observed in the sample originally formulated as (YO1.5)0.2(WO3)0.15(BiO1.5)0.65.  相似文献   

15.
The values of ΔG(O2), ΔH(O2), and ΔS(O2) have been determined from electrochemical cell measurements, within the whole homogeneity range of WO3?x, between 700 and 900°C. The samples have been previously prepared by equilibration of WO3 pellets with COCO2 mixtures and their composition has been determined by thermogravimetry. A single phase has been found between WO3 and WO2.9760. The results may be understood by considering a structure involving point defects, singly ionized oxygen vacancies V·O between WO3 and WO2.9880. For larger departure from stoichiometry, the variations of ΔH(O2) and ΔS(O2) suggest the formation of more complex defects. The enthalpy of formation of V·O has been calculated: 78 kcal · mole?1.  相似文献   

16.
During the irradiation of WO3 films d = 7–160 nm thick by light at λ = 320 nm (I = (1.5–7) × 1015 quantum cm−2 s−1), absorption band at λ = 850 nm appeared along with absorption band edge shift to shorter waves. The subsequent irradiation of samples at λ = 850 nm caused the disappearance of the longwave absorption band. The intrinsic absorption edge of WO3 films was determined (λ = 320 nm). The degree of transformations of WO3 films increased under atmospheric conditions as the intensity of incident light and the time of irradiation (1–140 min) grew and as film thickness decreased. A mechanism of photochemical transformations of WO3 films was suggested. This mechanism included the generation of electron-hole pairs, the recombination of part of nonequilibrium charge carriers, the formation of [eVa2+e] centers, and the isolation of photolysis products.  相似文献   

17.
Conductivity data for In2O3 both from literature and from new measurements are critically compared. They are correlated with atmospheric conditions and temperature. The conductivity data and structural considerations lead to the conclusion that non-stoichiometric In2O3 is an n-type semiconductor. Interstitial indium ions are probably the predominant defects.  相似文献   

18.
Indium Tungstate, In2(WO4)3 – an In3+ Conducting Solid Electrolyte Polycrystalline In2(WO4)3 has been electrochemically characterized and unambiguously identified as an In3+ conducting solid electrolyte. By heating, indium tungstate undergoes a phase transition between 250 °C and 260 °C transforming from a monoclinic to an orthorhombic phase for which the conduction properties have been determined. The adopted crystal structure in this high temperature region corresponds to the Sc2(WO4)3 type structure. The electrical conductivity was investigated by impedance spectroscopy in the temperature range 300–700 °C and amounts to about 3.7 · 10–5 Scm–1 at 600 °C with a corresponding activation energy of 59.5 kJ/mol. Polarization measurements indicated an exclusive current transport by ionic charge carriers with a transference number of about 0.99. In dc electrolysis experiments, the trivalent In3+ cations were undoubtedly identified as mobile species. A current transport by oxide anions was not observed.  相似文献   

19.
The luminescent nanocrystalline KEu(WO4)2 and KGd0.98Eu0.02(WO4)2 have been prepared by the Pechini method. X-ray diffraction, infrared and Raman spectroscopy as well as optical spectroscopy were used to characterise the obtained materials. The crystal structure of KEu(WO4)2 was refined in I2/c space group indicating the isostructurality to KGd(WO4)2. The size of the crystalline grains depended on the annealing temperature, increasing with the increase of the temperature. The average size of crystallites of both crystals formed at 540 °C was about 50 nm. Vibrational spectra showed noticeable changes as a function of size due to, among others, phonon confinement effect. Luminescence studies did not reveal significant changes for the nanocrystallites with the lowest grain size in comparison with the bulk material. The differences observed in luminescence spectra in form of slight inhomogeneous broadening of the spectral lines and increase of the hypersensitive I0-2/I0-1 ratio point to very low symmetry of Eu3+ ions and change of the polarisation of the local vicinities of Eu3+. X-ray diffraction, vibrational and optical studies showed that the structure of the synthesised nanocrystalline KEu(WO4)2 and KGd(WO4)2:Eu is nearly the same as that found for the bulk material. The size-driven phase transitions were established for both compounds.  相似文献   

20.
采用水热法成功制备了MoS2/WO3复合半导体光催化剂,分别通过SEM、TEM、EDS、XRD、Raman和DRS对催化剂的形貌,组成及结构进行表征,并用BET模型计算比表面积。对比发现球状MoS2/WO3对罗丹明B(RhB)的光降解效率明显高于纯WO3、片状MoS2/WO3复合半导体。针对球状MoS2/WO3复合半导体,分别研究了MoS2不同负载量(0.5%,1%,2%,5%,10%)对RhB光催化降解性能的影响,结果表明MoS2含量为2%时催化效果最佳。同时,研究了溶液的pH值(pH=1,3,6,7,11)对光催化降解反应活性的影响,结果显示pH=6时降解率最高。当催化剂量增加到1 g·L-1时,30min后RhB降解率达到96.6%。球状MoS2/WO3的瞬态光电流为0.050 6 mA·cm-2,比纯WO3提高了2.4倍。经过5次循环实验,球状MoS2/WO3复合半导体催化剂仍能保持90%的高降解率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号