首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 562 毫秒
1.
采用反相悬浮聚合法合成了丙烯酸-2-丙烯酰胺-2-甲基丙磺酸共聚物(P(AA/AMPS))耐盐性高吸水树脂,利用正交试验、单因素分析确定了合成树脂的最佳实验工艺条件,并对树脂的吸水性、保水性、反复吸水性能进行研究。结果表明,树脂在最佳条件下吸水倍率为1753.4g/g;树脂具有良好的耐盐性,吸盐水倍率达到189.64g/g;在一定温度范围内,树脂具有良好的保水性能。  相似文献   

2.
采用反相悬浮聚合法合成了丙烯酸-2-丙烯酰胺-2-甲基丙磺酸共聚物(P(AA/AMPS))耐盐性高吸水树脂,利用正交试验、单因素分析确定了合成树脂的最佳实验工艺条件,并对树脂的吸水性、保水性、反复吸水性能进行研究。结果表明,树脂在最佳条件下吸水倍率为1753.4g/g;树脂具有良好的耐盐性,吸盐水倍率达到189.64g/g;在一定温度范围内,树脂具有良好的保水性能。  相似文献   

3.
庄知博  南照东 《应用化学》2017,34(3):282-290
以过硫酸铵(APS)为引发剂,N,N′-亚甲基双丙烯酰胺(MBA)为交联剂,采用水溶液聚合法制备了碳纳米管/聚丙烯酸钠高吸水树脂。系统考察了碳纳米管质量分数、引发剂、交联剂和聚合温度对树脂吸水性能的影响。结果表明,以单体丙烯酸质量为基准,当交联剂,引发剂和碳纳米管质量分数分别为0.04%、0.3%和0.3%,聚合温度75℃时,所合成树脂的吸水性能最佳。添加碳纳米管后树脂表面粗糙和形成孔结构导致了其吸水性能的变化,使得碳纳米管/聚丙烯酸钠的吸水量和吸水速率明显提高,其吸去离子水和生理盐水能力分别达到1423和104g/g。该树脂重复吸水5次后,其吸水能力为1081.5g/g,达到最大吸水倍数的76.0%。  相似文献   

4.
DSC研究高吸水树脂吸水性能与分子结构的关系   总被引:2,自引:0,他引:2  
以丙烯酸(AA)、丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为共聚单体合成了聚丙烯酸-丙烯酰胺-2-丙烯酰胺基-2-甲基丙磺酸(PAA-AM-AMPS)三元共聚物高吸水树脂.利用茶叶袋法测定了其最大吸水倍率,通过差示扫描量热仪(DSC)测定并比较了含水量为50%,75%和91%的各种水凝胶的自由水和结合水含量.结果表明在蒸馏水和生理盐水中高吸水树脂的最大吸水倍率分别为1900g/g和185g/g,共聚物的结合水含量随着AMPS和AA含量增加及AM含量的减少而增大;在0.9%生理盐水中,结合水含量随着AMPS和AM含量增加及AA含量的减少而增大,共聚物和均聚物高吸水树脂的最大吸水倍率呈现出与结合水含量相同的变化规律.  相似文献   

5.
通过氧化还原引发荆引发的接枝共聚反应,使阴离子型单体丙烯酸(AA)和阳离子型单体三甲基烯丙基氯化铵(TMAAC)在羧甲基壳聚糖(CMCTS)的分子链上接枝共聚,制得羧甲基壳聚糖接枝-(聚丙烯酸-co-聚三甲基烯丙基氯化铵)(CMCTS-g-(PAA-co-PTMAAC)两性聚电解质高吸水性树脂.采用红外光谱对产物的结构进行了表征,比较了反应条件对产物吸液性能的影响.发现制备具有良好吸液性能的高吸水性树脂的最优化反应条件为:TMAAC占单体总质量的14.3%,mNNMBA/mAA值在0.014附近,单体总质量为CMCTS质量的9.33倍,丙烯酸中和度在20%~30%之间.研究发现,随外部溶液pH值的变化,两性聚电解质高吸水性树脂的溶胀性能在酸性和碱性条件下各有一个最大值,在等电点处产物的吸液性相对较低.  相似文献   

6.
PAA/PVA SIPN高吸水性树脂的制备及性能研究   总被引:2,自引:0,他引:2  
采用水溶液法合成了聚丙烯酸-聚乙烯醇(PAA-PVA)半互传网络型高吸水性树脂,其工艺条件的优化结果为:丙烯酸(AA)与PVA质量比为10∶0.5,AA中和度为80%,加入AA单体质量0.14%的引发剂和0.025%的交联剂,产物吸水率为530g/g,吸盐水率达63g/g。并采用红外光谱法表征了半互穿网络结构的形成。  相似文献   

7.
耐水解高吸水树脂的合成与性能研究   总被引:1,自引:0,他引:1  
采用2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)、十二烷基苯磺酸钠(LAS)为主要原料,以二乙烯基苯(DVB)为交联剂制备出P(AMPS+AA)高吸水膨胀树脂,考察了AMPS与AA配比、中和度、交联剂种类与用量、LAS加量等合成工艺对吸水树脂性能的影响。研究结果表明,在丙烯酸系吸水树脂中引入AMPS结构单元,有利于提高树脂在盐水中的吸液能力,改善高吸水树脂的耐盐性;在以DVB为交联剂制备P(AMPS+AA)树脂时,LAS加量对树脂性能影响显著,当DVB用量为0.3%-0.45%、十二烷基苯磺酸钠用量0.15%-0.3%时,制备的P(AMPS+AA)树脂具有较高吸水能力,并且其稳定性比N,N’-亚甲基双丙烯酰胺(NMBA)交联的树脂优良,在高温碱性或酸性条件下显示出良好的耐水解性能。  相似文献   

8.
两性纳米复合高吸水性树脂的结构与性能   总被引:3,自引:0,他引:3  
通过丙烯酸钠、阳离子单体丙烯酰氧乙基三甲基氯化铵(DAC)与钠蒙脱土原位溶液聚合成功地制备了具有插层结构的两性纳米复合高吸水性树脂. 其吸水性树脂吸水倍率和凝胶的抗压强度相对于聚丙烯酸钠基质均有较大提高. 吸水倍率最高可达2 380 g/g, 而凝胶的抗压强度提高到基质的180%左右. 由于复合材料结构上具有两性基团, 表现出对环境pH值特殊的应答性. 同时, 阳离子单体DAC的加入影响体系纳米结构的形成.  相似文献   

9.
以丙烯酸(AA)、改性棉秆纤维素(MCSC)和腐植酸(HA)为原料,2,2-二甲氧基-苯基甲酮为引发剂,采用紫外光聚合法制备了降解性复合高吸水树脂(MCSC-g-PAA/HA)。用红外光谱和扫描电镜对产物进行了表征。研究了AA的浓度、MCSC和HA的含量、反应时间和光引发剂的添加量等因素对该树脂溶胀性能的影响。通过测定该树脂的吸水速率和土壤中的保水率及降解性,研究了盐溶液浓度对树脂吸液率的影响。结果表明,在优化条件下,所得树脂在蒸馏水和食盐水(w(NaCl)=0.9%)中的吸液率分别达到870 g/g与94 g/g。  相似文献   

10.
利用冻融循环处理破坏甲壳素致密的晶体结构和氢键相互作用,使甲壳素溶解在8 wt%NaOH/4wt%urea水溶液中,制备了碱-甲壳素均相溶液.采用静态溶液聚合法,以过硫酸铵(APS)为引发剂、甲叉双丙烯酰胺(MBA)为交联剂,在均相条件下制备了甲壳素接枝聚丙烯酸钠高吸水树脂.研究了丙烯酸、NaOH、MBA和APS用量以及反应温度和时间对产物吸水性能和得率的影响.在最优化条件下制备的树脂的最大吸蒸馏水、自来水、生理盐水和人工尿液倍率分别可达1251,455,84和77 g.g-1.采用FTIR和XRD对合成的树脂进行初步结构表征,证明反应过程中甲壳素与丙烯酸发生了接枝共聚反应,而不是甲壳素与聚丙烯酸钠的简单物理共混.  相似文献   

11.
丙烯酸与丙烯酰胺共聚制备高吸水性树脂   总被引:3,自引:0,他引:3  
采用溶液聚合法,以N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,过硫酸钾(KPS)为引发剂合成了高吸水性树脂聚(丙烯酸-丙烯酰胺)(P(AA—AM)),研究了单体配比、丙烯酸中和度、引发剂及交联剂用量、反应温度对树脂在去离子水和0.9%盐水中吸水率的影响.最佳条件下制备的树脂在去离子水中吸水率为750g·g^-1,在0.9%盐水中吸水率为85g·g^-1.  相似文献   

12.
Utilization of raw materials available in nature and their application to derive other useful products without any adverse impact on the environment has long been a desired goal. In this work, guar gum (GG) and attapulgite (APT) clay were used as raw materials for preparing guar gum‐g‐poly(acrylic acid)/attapulgite (GG‐g‐PAA/APT) superabsorbent composites through the graft copolymerization of GG, partially neutralized acrylic acid (AA) and APT in aqueous solution. The effects of reaction conditions such as concentrations of the initiator and crosslinker, APT content, etc. on water absorbency were investigated. The composite prepared under optimal conditions gave the best absorption of 529 g/g sample in distilled water and 61 g/g sample in 0.9 wt% NaCl solution. Swelling behaviors revealed that the superabsorbent composites retained a high water absorbency over a wide pH range of 4–11, and the developed composites also exhibited improved reswelling and water‐retention capabilities. The superabsorbent composites can be utilized as eco‐friendly water‐manageable materials for agricultural and horticultural applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
A novel cellulose acetate‐coated compound fertilizer with controlled‐release and water‐retention (CAFCW) was prepared, which possessed the three‐layer structure. Its core was water‐soluble compound fertilizer granular, the inner coating was cellulose acetate (CA), and the outer coating was poly(acrylic acid‐co‐acrylamide)/unexpanded vermiculite (P(AA‐co‐AM)/UVMT) superabsorbent composite. The effects of the amount of acrylamide, crosslinker, initiator, degree of neutralization of acrylic acid (AA), and unexpanded vermiculite concentration on water absorbency were investigated and optimized. The water absorbency of CAFCW was 72 times its own weight if it was allowed to swell in tap water at room temperature for 90 min. Element analysis and atomic absorption spectrophotometer results showed that the product contained 11% nitrogen, 6% phosphorus (shown by P2O5), 9% potassium (shown by K2O), 1% calcium (shown by CaO), and 0.4% magnesium (shown by MgO). Swelling rate, slow‐release, and water‐retention properties of CAFCW were also investigated. This product with good controlled‐release and water‐retention capacity, being degradable in soil and environmentally friendly, could be especially useful in agricultural and horticultural applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Majority of superabsorbent polymers (SAPs) yet reported either have low gel strength or high production cost. Therefore, we synthesized a novel polyacrylic acid-grafted China clay (Kaolinite) super-absorbent polymer composite (SAPC) with high thermal stability, low cost of production and superior sorption and retention capability for water and salt solution. The resulting SAPCs were extensively characterized and analysed by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results suggested that the composites were thermally stable. Water absorbency increased with increase of clay content up to 45%, while further increase in clay content decreased the water absorbency. Percentage of acrylic acid (AA) and clay by weight shows the optimum absorbency in 35% and 40% respectively. Crosslinker and initiator contents were optimized to be 0.5% and 0.3% by weight respectively. The resulting polymer composite showed high water absorbency of about 785 g/g and 103 g/g of 1% NaCl solution with above 90% retention ability at 50 oC.  相似文献   

15.
Acrylic acid (AA)–acrylamide (AM) based superabsorbent polymers (SAP) were synthesized by inverse suspension polymerization using potassium‐persulfate as the initiator, N,N′‐methylene bisacrylamide (BIS) as a crosslinker, sorbitan monostearate (Span 60) as the dispersant, cyclohexane as the solvent, and bis(methacryloylamino)‐azobenzene as the hydrophobic surface crosslinker. The influence of the polymerization parameters on the properties of the SAPs, water absorption (Q), morphology of the SAPs, swelling kinetics, salt resistance, and the reversibility of water absorption were investigated. The prepared SAPs have excellent water absorption, rapid water uptake, and good resistance to NaCl solutions. Furthermore, they show better reversible water uptake than the previously reported SAPs. The average water absorbency is 2800 g/g and 181 g/g of liquid absorbance in 0.025M NaCl solution. The initial water uptake rate is 1357 g/g/min and the reversibility of water absorption is 200 g/g in the repeated fourth cycle. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1357–1364, 2008  相似文献   

16.
Starch and sodium humate were utilized as raw material for synthesizing starch‐g‐poly(acrylic acid)/sodium humate (St‐g‐PAA/SH) superabsorbent by graft copolymerization reaction of starch (St) and acrylic acid (AA) in the presence of sodium humate (SH) in aqueous solution. The effect of weight ratio of AA to St, initial monomer concentration, neutralization degree of AA, amount of crosslinker, initiator and SH on water absorbency of the superabsorbent were studied. The swelling rate and swelling behavior in NaCl solution as well as reswelling ability of the superabsorbent were systematically investigated. The results showed that the superabsorbent synthesized under optimal conditions with SH content of 7.7 wt% and St content of 11.5 wt% exhibits water absorbency of 1100 g/g in distilled water and 86 g/g in 0.9 wt% NaCl solution, respectively. Introducing SH into the St‐g‐PAA polymeric network can improved the swelling rate and reswelling capability of the superabsorbent. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Biomacromolecules, such as enzymes are widely used for biocatalysis, both at academic and industrial level, due to their high specificity and wide applications in different reaction media. Herein, taking GOx as a representative enzyme, in‐situ RAFT polymerization of four different monomers including acrylic acid (AA), methyl acrylate (MA), poly (ethylene glycol) acrylate (PEG‐A) and tert‐butyl acrylate (TBA) were polymerized directly on the surface of GOx to afford GOx‐poly (PEG‐A)(GOx‐PPEG‐A), GOx‐poly(MA)(GOx‐PMA), GOx‐poly(AA)(GOx‐PAA), and GOx‐poly(TBA)(GOx‐PTBA) conjugates, respectively. Thereinto, PAA and PPEG‐A represent the hydrophilic polymers, while PMA and PTBA stand for the hydrophobic ones. Effects of different polymer on the properties of GOx were investigated by measuring the bioactivity and stability of the as‐prepared and different GOx‐polymer conjugates. Higher bioactivity was obtained for GOx modified with hydrophilic polymers compared with that modified with hydrophobic ones. All the tested polymers can enhance the stability of the GOx, while the hydrophobic GOx‐polymers conjugates exhibited much better stability than the hydrophilic ones. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1289–1293  相似文献   

18.
Abstract

A novel hydrolysis-resistant superabsorbent composite was prepared via the solution polymerization based on acrylic acid (AA) and sodium bentonite (SBT) as monomers, tetraallylammonium bromine (TAAB) as crosslinker and ammonium persulfate (APS) as initiator. The mechanism of polymerization and the structure of the superabsorbent polymer (SAP) were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (X-ray), and scanning electron microscopy (SEM). The reaction conditions such as different mass ratios of APS to AA, TAAB to AA, SBT to AA, neutralization degree of AA were optimized by orthogonal experiment, and the influence of each reaction condition on the capacity of water absorption at 150?°C was investigated via single-factor controlled experiment. The hydrolysis resistance and swelling kinetics of the SAP were studied in different solutions at 150?°C. Compared to traditional SAPs, the SAP synthesized with TAAB as crosslinker performed a more excellent hydrolysis resistance and water absorbency capacity at high temperatures. The water absorbency in distilled water or 0.1?mol L?1 NaCl solution could reach 392.6 and 145.2?g g?1at 150?°C, respectively. The SAP maintaining high swelling capacity in the pH range of 5–9 indicated its wide application values in the acidic or alkaline environment at high temperature. In addition, the SAP exhibited good reusability which could still retain about 73% of its initial water absorbency after reswelling six times at 150?°C.  相似文献   

19.
PAAM高吸水树脂反相悬浮聚合   总被引:1,自引:0,他引:1  
采用反相悬浮聚合法,通过部分中和丙烯酸与丙烯酰胺共聚制备了聚(丙烯酸-丙烯酰胺)(PAAM)高吸水树脂,讨论了聚合过程主要影响因素对其吸液性能的影响,并对其进行了FTIR、TGA测试,得到最佳的合成工艺配方:单体质量浓度为30%,中和度N为75%,丙烯酸与丙烯酰胺的摩尔比为7∶3,交联剂、引发剂和分散剂质量浓度分别为0.065%、0.7%和0.5%(相对于单体总质量),单体溶液的滴加速度为2~3mL/min,聚合温度和时间分别为70℃和1.5h。此时在蒸馏水、0.9%NaCl溶液%(wt)中最大吸水倍率分别为Qw=1300g/g、Qs=93g/g(Qw为蒸馏水中吸水倍率,Qs为0.9%NaCl溶液中的吸水倍率,下同),树脂在320℃之前都是比较稳定的,可以适应较高的使用温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号