首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Types of surface forces determining the disjoining pressure isotherms of wetting films of low-molecular-weight alkanes on water surface are discussed. The van der Waals forces in alkane interlayers at different temperatures were calculated using a combination of exact equations of the Dzyaloshinsky—Lifshitz—Pitaevsky macroscopic theory and the multi-oscillator model for representation of the dielectric permittivity spectra of contacting bodies. Taking account of competitive action of the van der Waals and image forces allows one not only to reproduce specific features of wetting in the systems studied at different temperatures, but also to describe quantitatively the contact angles and the experimentally observed isotherms of polymolecular adsorption. The experimentally detected wetting transition in the water—pentane—vapor system was rationalized using the results of calculations mentioned above and the Derjaguin—Frumkin theory of wetting. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 256–266, February, 2008.  相似文献   

3.
The surface properties of silica particles significantly influence their efficiency in particle-assisted wetting. A series of small particles of controlled surface hydrophobicity was mixed with a nonvolatile oil. These mixtures were applied onto a water surface; the structures formed were subsequently solidified by photopolymerization and observed using scanning electron microscopy. For the most hydrophilic particles, only lenses of pure oil formed, with the particles being submerged into the aqueous phase. The most hydrophobic particles help to form patches of stable homogeneous mixed layers composed of oil and particles. In these cases the particles adhere to the air-oil as well as to the oil-water interfaces. For particles with intermediate hydrophobicity, lenses and patches of mixed layers were observed. These three different observations verify that the hydrophobicity of the particle surface determines the wetting behavior of the oil at the water surface.  相似文献   

4.
The effect of surfactants on wetting behavior of super-hydrophobic surfaces was investigated. Super-hydrophobic surfaces were prepared of alkylketene dimer (AKD) by casting the AKD melt in a specially designed mold. Time-dependent studies were carried out, using the axisymmetric drop shape analysis method for contact angle measurement of pure water on AKD surfaces. The results show that both advancing and receding contact angles of water on the AKD surfaces increase over time ( approximately 3 days) and reach the values of about 164 and 147 degrees , respectively. The increase of contact angles is due to the development of a prickly structure on the surface (verified by scanning electron microscopy), which is responsible for its super-hydrophobicity. Aqueous solutions of sodium acetate, sodium dodecyl sulfate, hexadecyltrimethylammonium bromide, and n-decanoyl-n-methylglucamine were used to investigate the wetting of AKD surfaces. Advancing and receding contact angles for various concentrations of different surfactant solutions were measured. The contact angle results were compared to those of a number of pure liquids with surface tensions similar to those of surfactant solutions. It was found that although the surface tensions of pure liquids and surfactant solutions at high concentrations are similar, the contact angles are very different. Furthermore, the usual behavior of super-hydrophobic surfaces that turn super-hydrophilic when the intrinsic contact angle of liquid on a smooth surface (of identical material) is below 90 degrees was not observed in the presence of surfactants. The difference in the results for pure liquids and surfactant solutions is explained using an adsorption hypothesis.  相似文献   

5.
Surface forces between gold surfaces were measured in pure water at temperatures in the range of 10-40 °C using an atomic force microscope (AFM). The surfaces were hydrophobized by self-assembly of alkanethiols (C(n)SH) with n=2 and 16 in ethanol solutions. The data were used to determine the changes in excess free energies (ΔG(f)) of the thin water films per unit area by using the Derjaguin approximation [1]. The free energy data were then used to determine the changes in excess film entropy (ΔS(f)) and the excess film enthalpy (ΔH(f)) per unit area. The results show that both ΔS(f) and ΔH(f) decrease with decreasing film thickness, suggesting that the macroscopic hydrophobic interaction involves building some kind of structures in the intervening thin films of water. It was found that |ΔH(f)|>|TΔS(f)|, which is a necessary condition for an attractive force to appear when the enthalpy and entropy changes are both negative. That macroscopic hydrophobic interaction is enthalpically driven is contrary to the hydrophobic interactions at molecular scale. The results obtained in the present work are used to discuss possible origins for the long-range attractions observed between hydrophobic surfaces.  相似文献   

6.
Submersed superhydrophobic surfaces exhibit great potential for reducing flow resistance in microchannels and drag of submersed bodies. However, the low stability of liquid-air interfaces on those surfaces limits the scope of their application, especially under high liquid pressure. In this paper, we first investigate the wetting states on submersed hydrophobic surfaces with one-level structure under hydrostatic pressure. Different equilibrium states based on free-energy minimization are formulated, and their stabilities are analyzed as well. Then, by comparison with the existing numerical and experimental studies, we confirm that a new metastable state, which happens after depinning of the three-phase contact line (TCL), exists. Finally, we show that a strategy of using hierarchical structures can strengthen the TCL pinning of the liquid-air interface in the metastable state. Therefore, the hierarchical structure on submersed surfaces is important to further improve the stability of superhydrophobicity under high liquid pressure.  相似文献   

7.
We investigated the thinning of wetting films formed from aqueous solution of non-ionic triblock copolymer Pluronic F127 on the surface of silica using a home-made thin film balance and time-resolved ellipsometry. Imaging ellipsometry was used to visualize the film structures at subsequent stages of their development. The results unambiguously show that the time required for the formation of steady films strongly depends on the electrolyte concentration. When increasing the latter from 10(-4) to 0.1 M, this time typically increases with several orders of magnitude, from a few minutes to several hours. Moreover, for sufficiently large amounts of salt, two characteristic relaxation regimes can be clearly identified. After initial quick thinning, further thinning slows down enormously. These typical kinetic regimes are thought to result from the coupled dependencies of the bulk and interfacial properties of F127 on salt concentration. Possible explanations of the phenomenon are discussed.  相似文献   

8.
Using two-dimensional surface plasmon resonance measurements, we have observed the formation of traveling waves in the delamination of thin films of polydimethylsilane (PDMS) exposed to methanol. Films were spin-coated on a gold surface and the methanol was added to the top surface. The stress-induced instability caused by the swelling of the PDMS thin film when its edge is pinned to the gold surface leads to wrinkle formation and propagation at the interface. The periodic pattern is thought to be the result of an Asaro-Tiller-Grinfeld (ATG) instability.  相似文献   

9.
Anodic oxide films formed potentiostatically on niobium surfaces, from open circuit potential (OCP) to 10 V, were studied by performing in situ and ex situ ellipsometric measurements. The kinetics of the film thickness growth in 1 M H2SO4 and complex indices of refraction of these films were determined. A strong influence of the surface preparation conditions on the complex refractive indices of the metal substrate and anodic oxide films was shown. By steady-state measurements at OCP, a small thickening of the natural air-formed oxide film with chemical composition Nb2O5 in 1 M H2SO4 solution was detected. With cathodic pre-treatment, only partial reduction and small thinning of the natural air-formed oxide film was possible. The thicknesses of the natural air-formed oxide films on fine mechanically polished and electropolished Nb surfaces were determined. The build up of the natural air-formed oxide film, at ex situ conditions, on the already formed anodic oxide films was confirmed. It was shown that electropolishing gives more similar optical surface properties to the bare metal than the fine mechanical polishing. Electronic Publication  相似文献   

10.
11.
The underlying mechanisms of stability, metastability, or instability of the Cassie-Baxter and Wenzel wetting modes and their transitions on superhydrophobic surfaces decorated with periodic micropillars are quantitatively studied in this article. Hydraulic pressure, which may be generated by the water-air interfacial tension of water droplets or external factors such as raining impact, is shown to be a key to understanding these mechanisms. A detailed transition process driven by increasing hydraulic pressure is numerically simulated. The maximum sustainable or critical pressure of the Cassie-Baxter wetting state on a pillarlike microstructural surface is formulated for the first time in a simple, unified, and precise form. This analytic result reveals the fact that reducing the microstructural scales (e.g., the pillars' diameters and spacing) is probably the most efficient measure needed to enlarge the critical pressure significantly. We also introduce a dimensionless parameter, the pillar slenderness ratio, to characterize the stability of either the Cassie-Baxter or the Wenzel wetting state and show that the energy barrier for transitioning from the Cassie-Baxter to the Wenzel wetting mode is proportional to both the slenderness ratio and the area fraction. Thus, the Cassie-Baxter wetting mode may collapse under a hydraulic pressure lower than the critical one if the slenderness ratio is improperly small. This quantitative study explains fairly well some experimental observations of contact angles that can be modeled by neither Wenzel nor Cassie-Baxter contact angles and eventually leads to our proposals for a mixed (or coexisting) wetting mode.  相似文献   

12.
A series of surfaces with microscale checkerboard patterns consisting of continuous central lines and discontinuous lateral lines were fabricated. The surface wetting properties of these checkerboard patterns were found to be anisotropic. The central continuous lines were found to have a strong influence on the dynamic wetting properties and moving trajectories of the water droplets. The droplets move more easily in the direction parallel to the central continuous lines and less easily in the direction perpendicular to the central continuous lines. Meanwhile, the droplets' moving path tends to incline toward the central continuous lines from a tilting direction. When the microsurface was modified with a layer of nanowire, the surface wettability was found to be isotropic and superhydrophobic.  相似文献   

13.
Ferric stearate, a three-tailed amphiphile, forms bimolecular layers on water surfaces. Molecules in the lower layer are in an "asymmetric" configuration, Fe-containing heads touching water and three hydrocarbon tails in air, while molecules in the upper layer are in a "symmetric" configuration, in pairs of "Y and inverted Y" disposition of tails about the Fe-bearing head. Pressure relaxation at constant area (pi- t curves) and area relaxation at constant pressure ( A- t curves) of this bimolecular layer can be modeled as a sum of three exponential decay terms with distinct time constants and weight factors. Relating the long-term decay with desorption of the total film thus indicates a remarkable long-term stability of the bimolecular layer film. An X-ray reflectivity study of the bimolecular films deposited horizontally on Si(001) at various conditions of relaxation shows no further growth along the vertical of any other layer. Under pressure relaxation molecules are transferred from the upper layer to the lower layer with a change from symmetric to asymmetric configuration, while under area relaxation the transfer is from the lower layer to the upper layer with a configurational change from symmetric to asymmetric.  相似文献   

14.
It has been shown that a structural component of disjoining pressure, ν8, decreasing according to the exponential law as the layer thickness increases, arises in the wetting films of nitrobenzene formed on the lyophilic surface of quartz. A family of isotherms, ν8, have been obtained within a temperature range 293–333 K. The dependence of parameters on temperature has been determined, the parameters being characteristic of the transition of a wetting film into a thermodynamically nonequilibrium state.  相似文献   

15.
Studies of wetting and stability of mixed monolayers containing hydrophobie and hydrophilic components are discussed. We are reporting the observation of an apparent concentration-driven transition in the cosine of the contact angles of liquids on mixed monolayers. It is suggested that this phenomenon is due to a possible (true or rounded) surface phase transition, resulting in the formation of a prewetting water layer. This formation is triggered by variations in the quenched distribution of random surface fields. The variation of the surface free-energy, both polar and dispersive parts, has been determined as a function of surface OH-concentration. The surface free-energy of the 100% OH surface is close to that found for water, as might be expected for a surface coated with several monolayers of water. Zisman plots obtained for several of the surfaces using polar and nonpolar liquids give γc values which follow the observed dispersive contribution to the total surface free energy, and thus do not present a good approximation to the surface free energy (i.e., γc < γsv).Contact angle variation was studied on self-assembled alkanethiol monolayers containing mixtures of OH and CH3 groups at their air-monolayer interface. It was found that these high free energy organic surfaces yielded contact angles which were not stable over long periods of time. The extent of the variation was found to be related to the surface free energy (%OH). The effect of different storage environments and temperature on the changing contact angles are discussed. We propose that monolayer surfaces containing high concentrations of OH groups on mobile organic chains are not stable. Such monolayer surfaces may stabilize over time, depending on the chain length, by surface reorganization and the adsorption of contaminants.  相似文献   

16.
The influence of fluoride (and its concentration) on the electrochemical and semiconducting properties of anodic oxide films formed on titanium surfaces was investigated by performing electrochemical measurements (potentiodynamic/pontiostatic polarization, open circuit potential (OCP), and capacitance measurements) for a titanium/oxide film/solution interface system in fluoride-containing 1.0 M HClO(4) solution. On the basis of the Mott-Schottky analysis, and with taking into account both the surface reactions (or, say, the specifically chemical adsorption) of fluoride ions at the oxide film surface and the migration/intercalation of fluoride ions into the oxide film, the changes in the electrochemical behavior of titanium measured in this work (e.g., the blocked anodic oxygen evolution, the increased anodic steady-state current density, the positively shifted flat band potential, and the positively shifted film breakdown potential) were interpreted by the changes in the surface and the bulk physicochemical properties (e.g., the surface charges, surface state density, doping concentration, and the interfacial potential drops) of the anodic films grown on titanium. The fluoride concentrations tested in this work can be divided into three groups according to their effect on the electrochemical behavior of the oxide films: < or =0.001 M, 0.001-0.01 M, and >0.01 M. By tracing the changes of the OCP of the passivated titanium in fluoride-containing solutions, the deleterious/depassive effect of fluoride ions on the titanium oxide films was examined and evaluated with the parameter of the film breakdown time. It was also shown that the films anodically formed on titanium at higher potentials (>2.5 V) exhibited significantly higher stability against the fluoride attack than that either formed at lower potentials (<2.5 V) or formed natively in the air.  相似文献   

17.
We study the dynamics and equilibrium profile shapes of contact lines for wetting in the case of a spatially inhomogeneous solid wall with stripe defects. Using a phase-field model with conserved dynamics, we first numerically determine the contact line behavior in the case of a stripe defect of varying widths. For narrow defects, we find that the maximum distortion of the contact line and the healing length is related to the defect width, while for wide defects, it saturates to constant values. This behavior is in quantitative agreement with the experimental data. In addition, we examine the shape of the contact line between two stripe defects as a function of their separation. Using the phase-field model, we also analytically estimate the contact line configuration and find good qualitative agreement with the numerical results.  相似文献   

18.
We present a combined experimental and theoretical self-consistent field (SCF) investigation of the wetting behavior of a polystyrene melt (composed of chains with degree of polymerization P) on top of a polystyrene brush (composed of chains with length N) grafted onto a silica surface. The control variables are the grafting density σ of the brush chains and the length of mobile chains P. Experiments show in agreement with the theory that there is a window of complete wetting. Both at very low and at high grafting densities the system remains partial wet. At large degree of polymerization P, there is a difference between the experimental and theoretical results. Theory predicts partial wetting only, whereas the window of complete wetting persists in the experiments even when P >> N. This difference is attributed to the double-well structure of the disjoining pressure as revealed by the SCF theory. With this type of disjoining pressure it is conceivable that a metastable zero contact angle remains present for very long times.  相似文献   

19.
Ultrathin nanocrystalline films of gold formed at different temperatures at the organic-aqueous interface have been investigated by X-ray diffraction, electron microscopy, atomic force microscopy, and electronic spectroscopy. The films are smooth and continuous over relatively large length scales and are generally approximately 100 nm thick. The size of the nanocrystals is sensitive to the reaction temperature, which also determines whether the film is metallic or an activated conductor. The surface plasmon band of gold is highly red-shifted in the films. Alkanethiols perturb the structure of the films, with the magnitude of the effect depending on the chain length. Accordingly, the position of the plasmon band and the electrical resistance of the films are affected by interaction with alkanethiols; the plasmon band approaches that of isolated nanocrystals in the presence of long-chain thiols.  相似文献   

20.
The stability of electrochemically formed NiF2 film in 1.0 M perchloric acid containing monovalent fluorides namely, NH4F, HF, NaF, KF and LiF, is investigated using cyclic voltammetry, chronoamperometry, atomic absorption spectroscopy and scanning electron microscopy. In addition to direct dissolution of nickel and dissolution through the oxide layer, a new mode of dissolution of NiF2 film as NiF3 and NiF4 2− through complex formation is proposed. This process is significantly influenced by the alkali metal fluorides. On a comparative basis the stability of NiF2 decreases in the order NH4F > HF > KF > LiF. Received: 29 July 1998 / Accepted: 3 November 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号